Step | Hyp | Ref
| Expression |
1 | | ineq1 4136 |
. . . . 5
⊢ (𝑠 = 𝑎 → (𝑠 ∩ 𝑡) = (𝑎 ∩ 𝑡)) |
2 | 1 | eqeq1d 2740 |
. . . 4
⊢ (𝑠 = 𝑎 → ((𝑠 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑡) = ∅)) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑠 = 𝑎 → (𝐼‘𝑠) = (𝐼‘𝑎)) |
4 | 3 | ineq1d 4142 |
. . . . 5
⊢ (𝑠 = 𝑎 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑡))) |
5 | 4 | eqeq1d 2740 |
. . . 4
⊢ (𝑠 = 𝑎 → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅)) |
6 | 2, 5 | imbi12d 344 |
. . 3
⊢ (𝑠 = 𝑎 → (((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅))) |
7 | | ineq2 4137 |
. . . . 5
⊢ (𝑡 = 𝑏 → (𝑎 ∩ 𝑡) = (𝑎 ∩ 𝑏)) |
8 | 7 | eqeq1d 2740 |
. . . 4
⊢ (𝑡 = 𝑏 → ((𝑎 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑏) = ∅)) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑡 = 𝑏 → (𝐼‘𝑡) = (𝐼‘𝑏)) |
10 | 9 | ineq2d 4143 |
. . . . 5
⊢ (𝑡 = 𝑏 → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑏))) |
11 | 10 | eqeq1d 2740 |
. . . 4
⊢ (𝑡 = 𝑏 → (((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) |
12 | 8, 11 | imbi12d 344 |
. . 3
⊢ (𝑡 = 𝑏 → (((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅))) |
13 | 6, 12 | cbvral2vw 3385 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) |
14 | | ntrcls.d |
. . . . 5
⊢ 𝐷 = (𝑂‘𝐵) |
15 | | ntrcls.r |
. . . . 5
⊢ (𝜑 → 𝐼𝐷𝐾) |
16 | 14, 15 | ntrclsrcomplex 41534 |
. . . 4
⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
17 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
18 | 14, 15 | ntrclsrcomplex 41534 |
. . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
20 | | difeq2 4047 |
. . . . . 6
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
21 | 20 | eqeq2d 2749 |
. . . . 5
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
22 | 21 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
23 | | elpwi 4539 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
24 | | dfss4 4189 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
25 | 23, 24 | sylib 217 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
26 | 25 | eqcomd 2744 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
27 | 26 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
28 | 19, 22, 27 | rspcedvd 3555 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
29 | | simpl1 1189 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) |
30 | 14, 15 | ntrclsrcomplex 41534 |
. . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
31 | 29, 30 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
32 | 14, 15 | ntrclsrcomplex 41534 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
34 | | difeq2 4047 |
. . . . . . . 8
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝐵 ∖ 𝑡) = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
35 | 34 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
36 | 35 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
37 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵) |
38 | | dfss4 4189 |
. . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
39 | 37, 38 | sylib 217 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
40 | 39 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
41 | 40 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
42 | 33, 36, 41 | rspcedvd 3555 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
43 | 42 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
44 | | simp13 1203 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑎 = (𝐵 ∖ 𝑠)) |
45 | | ineq1 4136 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝑎 ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ 𝑏)) |
46 | 45 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝑎 ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅)) |
47 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝐼‘𝑎) = (𝐼‘(𝐵 ∖ 𝑠))) |
48 | 47 | ineq1d 4142 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏))) |
49 | 48 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅)) |
50 | 46, 49 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) |
51 | 44, 50 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) |
52 | | simp3 1136 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑏 = (𝐵 ∖ 𝑡)) |
53 | | ineq2 4137 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐵 ∖ 𝑠) ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡))) |
54 | 53 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅)) |
55 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (𝐼‘𝑏) = (𝐼‘(𝐵 ∖ 𝑡))) |
56 | 55 | ineq2d 4143 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) |
57 | 56 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅)) |
58 | 54, 57 | imbi12d 344 |
. . . . . 6
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) |
59 | 52, 58 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) |
60 | | simp11 1201 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝜑) |
61 | | simp12 1202 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ∈ 𝒫 𝐵) |
62 | | simp2 1135 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ∈ 𝒫 𝐵) |
63 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
64 | 63 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ⊆ 𝐵) |
65 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵) |
66 | 65 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ⊆ 𝐵) |
67 | 64, 66 | unssd 4116 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠 ∪ 𝑡) ⊆ 𝐵) |
68 | | ssid 3939 |
. . . . . . . . . 10
⊢ 𝐵 ⊆ 𝐵 |
69 | | rcompleq 4226 |
. . . . . . . . . 10
⊢ (((𝑠 ∪ 𝑡) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) |
70 | 67, 68, 69 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) |
71 | | difundi 4210 |
. . . . . . . . . 10
⊢ (𝐵 ∖ (𝑠 ∪ 𝑡)) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) |
72 | | difid 4301 |
. . . . . . . . . 10
⊢ (𝐵 ∖ 𝐵) = ∅ |
73 | 71, 72 | eqeq12i 2756 |
. . . . . . . . 9
⊢ ((𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵) ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅) |
74 | 70, 73 | bitr2di 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ ↔ (𝑠 ∪ 𝑡) = 𝐵)) |
75 | | ntrcls.o |
. . . . . . . . . . . . . . . 16
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
76 | 75, 14, 15 | ntrclsiex 41552 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
77 | 76 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
78 | | elmapi 8595 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
80 | 14, 15 | ntrclsbex 41533 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ V) |
81 | 80 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
82 | | difssd 4063 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
83 | 81, 82 | sselpwd 5245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
84 | 79, 83 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) |
85 | 84 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) |
86 | | ssinss1 4168 |
. . . . . . . . . . 11
⊢ ((𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) |
87 | 85, 86 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) |
88 | | 0ss 4327 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐵 |
89 | | rcompleq 4226 |
. . . . . . . . . 10
⊢ ((((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵 ∧ ∅ ⊆ 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) |
90 | 87, 88, 89 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) |
91 | | difindi 4212 |
. . . . . . . . . 10
⊢ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
92 | | dif0 4303 |
. . . . . . . . . 10
⊢ (𝐵 ∖ ∅) = 𝐵 |
93 | 91, 92 | eqeq12i 2756 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅) ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) |
94 | 90, 93 | bitrdi 286 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵)) |
95 | 74, 94 | imbi12d 344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵))) |
96 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝐷‘𝐼) = (𝐷‘𝐼) |
97 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑠) = ((𝐷‘𝐼)‘𝑠) |
98 | 75, 14, 81, 77, 96, 63, 97 | dssmapfv3d 41516 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
99 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑡) = ((𝐷‘𝐼)‘𝑡) |
100 | 75, 14, 81, 77, 96, 65, 99 | dssmapfv3d 41516 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
101 | 98, 100 | uneq12d 4094 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
102 | 75, 14, 15 | ntrclsfv1 41554 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
103 | 102 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐷‘𝐼) = 𝐾) |
104 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑠) = (𝐾‘𝑠)) |
105 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑡) = (𝐾‘𝑡)) |
106 | 104, 105 | uneq12d 4094 |
. . . . . . . . . . 11
⊢ ((𝐷‘𝐼) = 𝐾 → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
107 | 103, 106 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
108 | 101, 107 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
109 | 108 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵 ↔ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵)) |
110 | 109 | imbi2d 340 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
111 | 95, 110 | bitrd 278 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
112 | 60, 61, 62, 111 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
113 | 51, 59, 112 | 3bitrd 304 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
114 | 31, 43, 113 | ralxfrd2 5330 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) → (∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
115 | 17, 28, 114 | ralxfrd2 5330 |
. 2
⊢ (𝜑 → (∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
116 | 13, 115 | syl5bb 282 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |