Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclskb Structured version   Visualization version   GIF version

Theorem ntrclskb 41679
Description: The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclskb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclskb
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4139 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
21eqeq1d 2740 . . . 4 (𝑠 = 𝑎 → ((𝑠𝑡) = ∅ ↔ (𝑎𝑡) = ∅))
3 fveq2 6774 . . . . . 6 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
43ineq1d 4145 . . . . 5 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
54eqeq1d 2740 . . . 4 (𝑠 = 𝑎 → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝑎) ∩ (𝐼𝑡)) = ∅))
62, 5imbi12d 345 . . 3 (𝑠 = 𝑎 → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝑎𝑡) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑡)) = ∅)))
7 ineq2 4140 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
87eqeq1d 2740 . . . 4 (𝑡 = 𝑏 → ((𝑎𝑡) = ∅ ↔ (𝑎𝑏) = ∅))
9 fveq2 6774 . . . . . 6 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
109ineq2d 4146 . . . . 5 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
1110eqeq1d 2740 . . . 4 (𝑡 = 𝑏 → (((𝐼𝑎) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅))
128, 11imbi12d 345 . . 3 (𝑡 = 𝑏 → (((𝑎𝑡) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑡)) = ∅) ↔ ((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅)))
136, 12cbvral2vw 3396 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅))
14 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
15 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
1614, 15ntrclsrcomplex 41645 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 481 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
1814, 15ntrclsrcomplex 41645 . . . . 5 (𝜑 → (𝐵𝑎) ∈ 𝒫 𝐵)
1918adantr 481 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
20 difeq2 4051 . . . . . 6 (𝑠 = (𝐵𝑎) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2120eqeq2d 2749 . . . . 5 (𝑠 = (𝐵𝑎) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
2221adantl 482 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
23 elpwi 4542 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
24 dfss4 4192 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2523, 24sylib 217 . . . . . 6 (𝑎 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2625eqcomd 2744 . . . . 5 (𝑎 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ (𝐵𝑎)))
2726adantl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 𝐵) → 𝑎 = (𝐵 ∖ (𝐵𝑎)))
2819, 22, 27rspcedvd 3563 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
29 simpl1 1190 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑)
3014, 15ntrclsrcomplex 41645 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
3129, 30syl 17 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
3214, 15ntrclsrcomplex 41645 . . . . . . 7 (𝜑 → (𝐵𝑏) ∈ 𝒫 𝐵)
3332adantr 481 . . . . . 6 ((𝜑𝑏 ∈ 𝒫 𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
34 difeq2 4051 . . . . . . . 8 (𝑡 = (𝐵𝑏) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
3534eqeq2d 2749 . . . . . . 7 (𝑡 = (𝐵𝑏) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
3635adantl 482 . . . . . 6 (((𝜑𝑏 ∈ 𝒫 𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
37 elpwi 4542 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
38 dfss4 4192 . . . . . . . . 9 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
3937, 38sylib 217 . . . . . . . 8 (𝑏 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4039eqcomd 2744 . . . . . . 7 (𝑏 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ (𝐵𝑏)))
4140adantl 482 . . . . . 6 ((𝜑𝑏 ∈ 𝒫 𝐵) → 𝑏 = (𝐵 ∖ (𝐵𝑏)))
4233, 36, 41rspcedvd 3563 . . . . 5 ((𝜑𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
43423ad2antl1 1184 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
44 simp13 1204 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑎 = (𝐵𝑠))
45 ineq1 4139 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
4645eqeq1d 2740 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝑎𝑏) = ∅ ↔ ((𝐵𝑠) ∩ 𝑏) = ∅))
47 fveq2 6774 . . . . . . . . 9 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
4847ineq1d 4145 . . . . . . . 8 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
4948eqeq1d 2740 . . . . . . 7 (𝑎 = (𝐵𝑠) → (((𝐼𝑎) ∩ (𝐼𝑏)) = ∅ ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅))
5046, 49imbi12d 345 . . . . . 6 (𝑎 = (𝐵𝑠) → (((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅) ↔ (((𝐵𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅)))
5144, 50syl 17 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅) ↔ (((𝐵𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅)))
52 simp3 1137 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑏 = (𝐵𝑡))
53 ineq2 4140 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
5453eqeq1d 2740 . . . . . . 7 (𝑏 = (𝐵𝑡) → (((𝐵𝑠) ∩ 𝑏) = ∅ ↔ ((𝐵𝑠) ∩ (𝐵𝑡)) = ∅))
55 fveq2 6774 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
5655ineq2d 4146 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
5756eqeq1d 2740 . . . . . . 7 (𝑏 = (𝐵𝑡) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅ ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅))
5854, 57imbi12d 345 . . . . . 6 (𝑏 = (𝐵𝑡) → ((((𝐵𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅) ↔ (((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅)))
5952, 58syl 17 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((((𝐵𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ∅) ↔ (((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅)))
60 simp11 1202 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
61 simp12 1203 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
62 simp2 1136 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
63 simp2 1136 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
6463elpwid 4544 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑠𝐵)
65 simp3 1137 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
6665elpwid 4544 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝑡𝐵)
6764, 66unssd 4120 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
68 ssid 3943 . . . . . . . . . 10 𝐵𝐵
69 rcompleq 4229 . . . . . . . . . 10 (((𝑠𝑡) ⊆ 𝐵𝐵𝐵) → ((𝑠𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠𝑡)) = (𝐵𝐵)))
7067, 68, 69sylancl 586 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠𝑡)) = (𝐵𝐵)))
71 difundi 4213 . . . . . . . . . 10 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
72 difid 4304 . . . . . . . . . 10 (𝐵𝐵) = ∅
7371, 72eqeq12i 2756 . . . . . . . . 9 ((𝐵 ∖ (𝑠𝑡)) = (𝐵𝐵) ↔ ((𝐵𝑠) ∩ (𝐵𝑡)) = ∅)
7470, 73bitr2di 288 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ ↔ (𝑠𝑡) = 𝐵))
75 ntrcls.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
7675, 14, 15ntrclsiex 41663 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
77763ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
78 elmapi 8637 . . . . . . . . . . . . . 14 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7977, 78syl 17 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
8014, 15ntrclsbex 41644 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ V)
81803ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
82 difssd 4067 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝐵𝑠) ⊆ 𝐵)
8381, 82sselpwd 5250 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
8479, 83ffvelrnd 6962 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
8584elpwid 4544 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
86 ssinss1 4171 . . . . . . . . . . 11 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8785, 86syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
88 0ss 4330 . . . . . . . . . 10 ∅ ⊆ 𝐵
89 rcompleq 4229 . . . . . . . . . 10 ((((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵 ∧ ∅ ⊆ 𝐵) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = (𝐵 ∖ ∅)))
9087, 88, 89sylancl 586 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = (𝐵 ∖ ∅)))
91 difindi 4215 . . . . . . . . . 10 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
92 dif0 4306 . . . . . . . . . 10 (𝐵 ∖ ∅) = 𝐵
9391, 92eqeq12i 2756 . . . . . . . . 9 ((𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = (𝐵 ∖ ∅) ↔ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = 𝐵)
9490, 93bitrdi 287 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅ ↔ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = 𝐵))
9574, 94imbi12d 345 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅) ↔ ((𝑠𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = 𝐵)))
96 eqid 2738 . . . . . . . . . . . 12 (𝐷𝐼) = (𝐷𝐼)
97 eqid 2738 . . . . . . . . . . . 12 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
9875, 14, 81, 77, 96, 63, 97dssmapfv3d 41627 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
99 eqid 2738 . . . . . . . . . . . 12 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
10075, 14, 81, 77, 96, 65, 99dssmapfv3d 41627 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
10198, 100uneq12d 4098 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
10275, 14, 15ntrclsfv1 41665 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐼) = 𝐾)
1031023ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (𝐷𝐼) = 𝐾)
104 fveq1 6773 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
105 fveq1 6773 . . . . . . . . . . . 12 ((𝐷𝐼) = 𝐾 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
106104, 105uneq12d 4098 . . . . . . . . . . 11 ((𝐷𝐼) = 𝐾 → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
107103, 106syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐷𝐼)‘𝑠) ∪ ((𝐷𝐼)‘𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)))
108101, 107eqtr3d 2780 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = ((𝐾𝑠) ∪ (𝐾𝑡)))
109108eqeq1d 2740 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = 𝐵 ↔ ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵))
110109imbi2d 341 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = 𝐵) ↔ ((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11195, 110bitrd 278 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅) ↔ ((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11260, 61, 62, 111syl3anc 1370 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((((𝐵𝑠) ∩ (𝐵𝑡)) = ∅ → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) = ∅) ↔ ((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11351, 59, 1123bitrd 305 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅) ↔ ((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11431, 43, 113ralxfrd2 5335 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11517, 28, 114ralxfrd2 5335 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵((𝑎𝑏) = ∅ → ((𝐼𝑎) ∩ (𝐼𝑏)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
11613, 115bitrid 282 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator