| Step | Hyp | Ref
| Expression |
| 1 | | ineq1 4193 |
. . . . 5
⊢ (𝑠 = 𝑎 → (𝑠 ∩ 𝑡) = (𝑎 ∩ 𝑡)) |
| 2 | 1 | eqeq1d 2738 |
. . . 4
⊢ (𝑠 = 𝑎 → ((𝑠 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑡) = ∅)) |
| 3 | | fveq2 6881 |
. . . . . 6
⊢ (𝑠 = 𝑎 → (𝐼‘𝑠) = (𝐼‘𝑎)) |
| 4 | 3 | ineq1d 4199 |
. . . . 5
⊢ (𝑠 = 𝑎 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑡))) |
| 5 | 4 | eqeq1d 2738 |
. . . 4
⊢ (𝑠 = 𝑎 → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅)) |
| 6 | 2, 5 | imbi12d 344 |
. . 3
⊢ (𝑠 = 𝑎 → (((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅))) |
| 7 | | ineq2 4194 |
. . . . 5
⊢ (𝑡 = 𝑏 → (𝑎 ∩ 𝑡) = (𝑎 ∩ 𝑏)) |
| 8 | 7 | eqeq1d 2738 |
. . . 4
⊢ (𝑡 = 𝑏 → ((𝑎 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑏) = ∅)) |
| 9 | | fveq2 6881 |
. . . . . 6
⊢ (𝑡 = 𝑏 → (𝐼‘𝑡) = (𝐼‘𝑏)) |
| 10 | 9 | ineq2d 4200 |
. . . . 5
⊢ (𝑡 = 𝑏 → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑏))) |
| 11 | 10 | eqeq1d 2738 |
. . . 4
⊢ (𝑡 = 𝑏 → (((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) |
| 12 | 8, 11 | imbi12d 344 |
. . 3
⊢ (𝑡 = 𝑏 → (((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅))) |
| 13 | 6, 12 | cbvral2vw 3228 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) |
| 14 | | ntrcls.d |
. . . . 5
⊢ 𝐷 = (𝑂‘𝐵) |
| 15 | | ntrcls.r |
. . . . 5
⊢ (𝜑 → 𝐼𝐷𝐾) |
| 16 | 14, 15 | ntrclsrcomplex 44026 |
. . . 4
⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 17 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 18 | 14, 15 | ntrclsrcomplex 44026 |
. . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
| 20 | | difeq2 4100 |
. . . . . 6
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
| 21 | 20 | eqeq2d 2747 |
. . . . 5
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
| 22 | 21 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
| 23 | | elpwi 4587 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
| 24 | | dfss4 4249 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 25 | 23, 24 | sylib 218 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 26 | 25 | eqcomd 2742 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
| 27 | 26 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
| 28 | 19, 22, 27 | rspcedvd 3608 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
| 29 | | simpl1 1192 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) |
| 30 | 14, 15 | ntrclsrcomplex 44026 |
. . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 31 | 29, 30 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 32 | 14, 15 | ntrclsrcomplex 44026 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
| 34 | | difeq2 4100 |
. . . . . . . 8
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝐵 ∖ 𝑡) = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
| 35 | 34 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
| 36 | 35 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
| 37 | | elpwi 4587 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵) |
| 38 | | dfss4 4249 |
. . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 39 | 37, 38 | sylib 218 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 40 | 39 | eqcomd 2742 |
. . . . . . 7
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
| 41 | 40 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
| 42 | 33, 36, 41 | rspcedvd 3608 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
| 43 | 42 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
| 44 | | simp13 1206 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑎 = (𝐵 ∖ 𝑠)) |
| 45 | | ineq1 4193 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝑎 ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ 𝑏)) |
| 46 | 45 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝑎 ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅)) |
| 47 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝐼‘𝑎) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 48 | 47 | ineq1d 4199 |
. . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏))) |
| 49 | 48 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅)) |
| 50 | 46, 49 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) |
| 51 | 44, 50 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) |
| 52 | | simp3 1138 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑏 = (𝐵 ∖ 𝑡)) |
| 53 | | ineq2 4194 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐵 ∖ 𝑠) ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡))) |
| 54 | 53 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅)) |
| 55 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (𝐼‘𝑏) = (𝐼‘(𝐵 ∖ 𝑡))) |
| 56 | 55 | ineq2d 4200 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) |
| 57 | 56 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅)) |
| 58 | 54, 57 | imbi12d 344 |
. . . . . 6
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) |
| 59 | 52, 58 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) |
| 60 | | simp11 1204 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝜑) |
| 61 | | simp12 1205 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ∈ 𝒫 𝐵) |
| 62 | | simp2 1137 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ∈ 𝒫 𝐵) |
| 63 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
| 64 | 63 | elpwid 4589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ⊆ 𝐵) |
| 65 | | simp3 1138 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵) |
| 66 | 65 | elpwid 4589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ⊆ 𝐵) |
| 67 | 64, 66 | unssd 4172 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠 ∪ 𝑡) ⊆ 𝐵) |
| 68 | | ssid 3986 |
. . . . . . . . . 10
⊢ 𝐵 ⊆ 𝐵 |
| 69 | | rcompleq 4285 |
. . . . . . . . . 10
⊢ (((𝑠 ∪ 𝑡) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) |
| 70 | 67, 68, 69 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) |
| 71 | | difundi 4270 |
. . . . . . . . . 10
⊢ (𝐵 ∖ (𝑠 ∪ 𝑡)) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) |
| 72 | | difid 4356 |
. . . . . . . . . 10
⊢ (𝐵 ∖ 𝐵) = ∅ |
| 73 | 71, 72 | eqeq12i 2754 |
. . . . . . . . 9
⊢ ((𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵) ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅) |
| 74 | 70, 73 | bitr2di 288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ ↔ (𝑠 ∪ 𝑡) = 𝐵)) |
| 75 | | ntrcls.o |
. . . . . . . . . . . . . . . 16
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| 76 | 75, 14, 15 | ntrclsiex 44044 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 77 | 76 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 78 | | elmapi 8868 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 80 | 14, 15 | ntrclsbex 44025 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ V) |
| 81 | 80 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
| 82 | | difssd 4117 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
| 83 | 81, 82 | sselpwd 5303 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 84 | 79, 83 | ffvelcdmd 7080 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) |
| 85 | 84 | elpwid 4589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) |
| 86 | | ssinss1 4226 |
. . . . . . . . . . 11
⊢ ((𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) |
| 88 | | 0ss 4380 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐵 |
| 89 | | rcompleq 4285 |
. . . . . . . . . 10
⊢ ((((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵 ∧ ∅ ⊆ 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) |
| 90 | 87, 88, 89 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) |
| 91 | | difindi 4272 |
. . . . . . . . . 10
⊢ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
| 92 | | dif0 4358 |
. . . . . . . . . 10
⊢ (𝐵 ∖ ∅) = 𝐵 |
| 93 | 91, 92 | eqeq12i 2754 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅) ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) |
| 94 | 90, 93 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵)) |
| 95 | 74, 94 | imbi12d 344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵))) |
| 96 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝐷‘𝐼) = (𝐷‘𝐼) |
| 97 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑠) = ((𝐷‘𝐼)‘𝑠) |
| 98 | 75, 14, 81, 77, 96, 63, 97 | dssmapfv3d 44010 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 99 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑡) = ((𝐷‘𝐼)‘𝑡) |
| 100 | 75, 14, 81, 77, 96, 65, 99 | dssmapfv3d 44010 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
| 101 | 98, 100 | uneq12d 4149 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
| 102 | 75, 14, 15 | ntrclsfv1 44046 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| 103 | 102 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐷‘𝐼) = 𝐾) |
| 104 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑠) = (𝐾‘𝑠)) |
| 105 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑡) = (𝐾‘𝑡)) |
| 106 | 104, 105 | uneq12d 4149 |
. . . . . . . . . . 11
⊢ ((𝐷‘𝐼) = 𝐾 → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
| 107 | 103, 106 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
| 108 | 101, 107 | eqtr3d 2773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) |
| 109 | 108 | eqeq1d 2738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵 ↔ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵)) |
| 110 | 109 | imbi2d 340 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 111 | 95, 110 | bitrd 279 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 112 | 60, 61, 62, 111 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 113 | 51, 59, 112 | 3bitrd 305 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 114 | 31, 43, 113 | ralxfrd2 5387 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) → (∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 115 | 17, 28, 114 | ralxfrd2 5387 |
. 2
⊢ (𝜑 → (∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |
| 116 | 13, 115 | bitrid 283 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |