| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ineq1 4213 | . . . . 5
⊢ (𝑠 = 𝑎 → (𝑠 ∩ 𝑡) = (𝑎 ∩ 𝑡)) | 
| 2 | 1 | eqeq1d 2739 | . . . 4
⊢ (𝑠 = 𝑎 → ((𝑠 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑡) = ∅)) | 
| 3 |  | fveq2 6906 | . . . . . 6
⊢ (𝑠 = 𝑎 → (𝐼‘𝑠) = (𝐼‘𝑎)) | 
| 4 | 3 | ineq1d 4219 | . . . . 5
⊢ (𝑠 = 𝑎 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑡))) | 
| 5 | 4 | eqeq1d 2739 | . . . 4
⊢ (𝑠 = 𝑎 → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅)) | 
| 6 | 2, 5 | imbi12d 344 | . . 3
⊢ (𝑠 = 𝑎 → (((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅))) | 
| 7 |  | ineq2 4214 | . . . . 5
⊢ (𝑡 = 𝑏 → (𝑎 ∩ 𝑡) = (𝑎 ∩ 𝑏)) | 
| 8 | 7 | eqeq1d 2739 | . . . 4
⊢ (𝑡 = 𝑏 → ((𝑎 ∩ 𝑡) = ∅ ↔ (𝑎 ∩ 𝑏) = ∅)) | 
| 9 |  | fveq2 6906 | . . . . . 6
⊢ (𝑡 = 𝑏 → (𝐼‘𝑡) = (𝐼‘𝑏)) | 
| 10 | 9 | ineq2d 4220 | . . . . 5
⊢ (𝑡 = 𝑏 → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ((𝐼‘𝑎) ∩ (𝐼‘𝑏))) | 
| 11 | 10 | eqeq1d 2739 | . . . 4
⊢ (𝑡 = 𝑏 → (((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) | 
| 12 | 8, 11 | imbi12d 344 | . . 3
⊢ (𝑡 = 𝑏 → (((𝑎 ∩ 𝑡) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅))) | 
| 13 | 6, 12 | cbvral2vw 3241 | . 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅)) | 
| 14 |  | ntrcls.d | . . . . 5
⊢ 𝐷 = (𝑂‘𝐵) | 
| 15 |  | ntrcls.r | . . . . 5
⊢ (𝜑 → 𝐼𝐷𝐾) | 
| 16 | 14, 15 | ntrclsrcomplex 44048 | . . . 4
⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) | 
| 17 | 16 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) | 
| 18 | 14, 15 | ntrclsrcomplex 44048 | . . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) | 
| 19 | 18 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) | 
| 20 |  | difeq2 4120 | . . . . . 6
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑎))) | 
| 21 | 20 | eqeq2d 2748 | . . . . 5
⊢ (𝑠 = (𝐵 ∖ 𝑎) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) | 
| 22 | 21 | adantl 481 | . . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) | 
| 23 |  | elpwi 4607 | . . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) | 
| 24 |  | dfss4 4269 | . . . . . . 7
⊢ (𝑎 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) | 
| 25 | 23, 24 | sylib 218 | . . . . . 6
⊢ (𝑎 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) | 
| 26 | 25 | eqcomd 2743 | . . . . 5
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) | 
| 27 | 26 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎))) | 
| 28 | 19, 22, 27 | rspcedvd 3624 | . . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) | 
| 29 |  | simpl1 1192 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) | 
| 30 | 14, 15 | ntrclsrcomplex 44048 | . . . . 5
⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) | 
| 31 | 29, 30 | syl 17 | . . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) | 
| 32 | 14, 15 | ntrclsrcomplex 44048 | . . . . . . 7
⊢ (𝜑 → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) | 
| 33 | 32 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) | 
| 34 |  | difeq2 4120 | . . . . . . . 8
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝐵 ∖ 𝑡) = (𝐵 ∖ (𝐵 ∖ 𝑏))) | 
| 35 | 34 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑡 = (𝐵 ∖ 𝑏) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) | 
| 36 | 35 | adantl 481 | . . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) | 
| 37 |  | elpwi 4607 | . . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵) | 
| 38 |  | dfss4 4269 | . . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) | 
| 39 | 37, 38 | sylib 218 | . . . . . . . 8
⊢ (𝑏 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) | 
| 40 | 39 | eqcomd 2743 | . . . . . . 7
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) | 
| 41 | 40 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏))) | 
| 42 | 33, 36, 41 | rspcedvd 3624 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) | 
| 43 | 42 | 3ad2antl1 1186 | . . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) | 
| 44 |  | simp13 1206 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑎 = (𝐵 ∖ 𝑠)) | 
| 45 |  | ineq1 4213 | . . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝑎 ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ 𝑏)) | 
| 46 | 45 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝑎 ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅)) | 
| 47 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (𝐼‘𝑎) = (𝐼‘(𝐵 ∖ 𝑠))) | 
| 48 | 47 | ineq1d 4219 | . . . . . . . 8
⊢ (𝑎 = (𝐵 ∖ 𝑠) → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏))) | 
| 49 | 48 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅)) | 
| 50 | 46, 49 | imbi12d 344 | . . . . . 6
⊢ (𝑎 = (𝐵 ∖ 𝑠) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) | 
| 51 | 44, 50 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅))) | 
| 52 |  | simp3 1139 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑏 = (𝐵 ∖ 𝑡)) | 
| 53 |  | ineq2 4214 | . . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐵 ∖ 𝑠) ∩ 𝑏) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡))) | 
| 54 | 53 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅)) | 
| 55 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (𝐼‘𝑏) = (𝐼‘(𝐵 ∖ 𝑡))) | 
| 56 | 55 | ineq2d 4220 | . . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) | 
| 57 | 56 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑏 = (𝐵 ∖ 𝑡) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅ ↔ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅)) | 
| 58 | 54, 57 | imbi12d 344 | . . . . . 6
⊢ (𝑏 = (𝐵 ∖ 𝑡) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) | 
| 59 | 52, 58 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ 𝑏) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘𝑏)) = ∅) ↔ (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅))) | 
| 60 |  | simp11 1204 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝜑) | 
| 61 |  | simp12 1205 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ∈ 𝒫 𝐵) | 
| 62 |  | simp2 1138 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ∈ 𝒫 𝐵) | 
| 63 |  | simp2 1138 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | 
| 64 | 63 | elpwid 4609 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ⊆ 𝐵) | 
| 65 |  | simp3 1139 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵) | 
| 66 | 65 | elpwid 4609 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ⊆ 𝐵) | 
| 67 | 64, 66 | unssd 4192 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠 ∪ 𝑡) ⊆ 𝐵) | 
| 68 |  | ssid 4006 | . . . . . . . . . 10
⊢ 𝐵 ⊆ 𝐵 | 
| 69 |  | rcompleq 4305 | . . . . . . . . . 10
⊢ (((𝑠 ∪ 𝑡) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) | 
| 70 | 67, 68, 69 | sylancl 586 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∪ 𝑡) = 𝐵 ↔ (𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵))) | 
| 71 |  | difundi 4290 | . . . . . . . . . 10
⊢ (𝐵 ∖ (𝑠 ∪ 𝑡)) = ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) | 
| 72 |  | difid 4376 | . . . . . . . . . 10
⊢ (𝐵 ∖ 𝐵) = ∅ | 
| 73 | 71, 72 | eqeq12i 2755 | . . . . . . . . 9
⊢ ((𝐵 ∖ (𝑠 ∪ 𝑡)) = (𝐵 ∖ 𝐵) ↔ ((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅) | 
| 74 | 70, 73 | bitr2di 288 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ ↔ (𝑠 ∪ 𝑡) = 𝐵)) | 
| 75 |  | ntrcls.o | . . . . . . . . . . . . . . . 16
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | 
| 76 | 75, 14, 15 | ntrclsiex 44066 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 77 | 76 | 3ad2ant1 1134 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 78 |  | elmapi 8889 | . . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | 
| 79 | 77, 78 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | 
| 80 | 14, 15 | ntrclsbex 44047 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ V) | 
| 81 | 80 | 3ad2ant1 1134 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) | 
| 82 |  | difssd 4137 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ⊆ 𝐵) | 
| 83 | 81, 82 | sselpwd 5328 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) | 
| 84 | 79, 83 | ffvelcdmd 7105 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) | 
| 85 | 84 | elpwid 4609 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) | 
| 86 |  | ssinss1 4246 | . . . . . . . . . . 11
⊢ ((𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) | 
| 87 | 85, 86 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵) | 
| 88 |  | 0ss 4400 | . . . . . . . . . 10
⊢ ∅
⊆ 𝐵 | 
| 89 |  | rcompleq 4305 | . . . . . . . . . 10
⊢ ((((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) ⊆ 𝐵 ∧ ∅ ⊆ 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) | 
| 90 | 87, 88, 89 | sylancl 586 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅))) | 
| 91 |  | difindi 4292 | . . . . . . . . . 10
⊢ (𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) | 
| 92 |  | dif0 4378 | . . . . . . . . . 10
⊢ (𝐵 ∖ ∅) = 𝐵 | 
| 93 | 91, 92 | eqeq12i 2755 | . . . . . . . . 9
⊢ ((𝐵 ∖ ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡)))) = (𝐵 ∖ ∅) ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) | 
| 94 | 90, 93 | bitrdi 287 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅ ↔ ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵)) | 
| 95 | 74, 94 | imbi12d 344 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵))) | 
| 96 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (𝐷‘𝐼) = (𝐷‘𝐼) | 
| 97 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑠) = ((𝐷‘𝐼)‘𝑠) | 
| 98 | 75, 14, 81, 77, 96, 63, 97 | dssmapfv3d 44032 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) | 
| 99 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ((𝐷‘𝐼)‘𝑡) = ((𝐷‘𝐼)‘𝑡) | 
| 100 | 75, 14, 81, 77, 96, 65, 99 | dssmapfv3d 44032 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐷‘𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) | 
| 101 | 98, 100 | uneq12d 4169 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) | 
| 102 | 75, 14, 15 | ntrclsfv1 44068 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) | 
| 103 | 102 | 3ad2ant1 1134 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐷‘𝐼) = 𝐾) | 
| 104 |  | fveq1 6905 | . . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑠) = (𝐾‘𝑠)) | 
| 105 |  | fveq1 6905 | . . . . . . . . . . . 12
⊢ ((𝐷‘𝐼) = 𝐾 → ((𝐷‘𝐼)‘𝑡) = (𝐾‘𝑡)) | 
| 106 | 104, 105 | uneq12d 4169 | . . . . . . . . . . 11
⊢ ((𝐷‘𝐼) = 𝐾 → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) | 
| 107 | 103, 106 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐷‘𝐼)‘𝑠) ∪ ((𝐷‘𝐼)‘𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) | 
| 108 | 101, 107 | eqtr3d 2779 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡))) | 
| 109 | 108 | eqeq1d 2739 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵 ↔ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵)) | 
| 110 | 109 | imbi2d 340 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠 ∪ 𝑡) = 𝐵 → ((𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) = 𝐵) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 111 | 95, 110 | bitrd 279 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 112 | 60, 61, 62, 111 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((((𝐵 ∖ 𝑠) ∩ (𝐵 ∖ 𝑡)) = ∅ → ((𝐼‘(𝐵 ∖ 𝑠)) ∩ (𝐼‘(𝐵 ∖ 𝑡))) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 113 | 51, 59, 112 | 3bitrd 305 | . . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 114 | 31, 43, 113 | ralxfrd2 5412 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) → (∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 115 | 17, 28, 114 | ralxfrd2 5412 | . 2
⊢ (𝜑 → (∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵((𝑎 ∩ 𝑏) = ∅ → ((𝐼‘𝑎) ∩ (𝐼‘𝑏)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | 
| 116 | 13, 115 | bitrid 283 | 1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) |