Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq2 Structured version   Visualization version   GIF version

Theorem ntrclsfveq2 40764
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.c (𝜑𝐶 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑘)   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq2
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsiex 40756 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8411 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
72, 3ntrclsrcomplex 40738 . . . . 5 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
86, 7ffvelrnd 6829 . . . 4 (𝜑 → (𝐼‘(𝐵𝑆)) ∈ 𝒫 𝐵)
98elpwid 4508 . . 3 (𝜑 → (𝐼‘(𝐵𝑆)) ⊆ 𝐵)
10 ntrclsfv.c . . . 4 (𝜑𝐶 ∈ 𝒫 𝐵)
1110elpwid 4508 . . 3 (𝜑𝐶𝐵)
12 rcompleq 4220 . . 3 (((𝐼‘(𝐵𝑆)) ⊆ 𝐵𝐶𝐵) → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
139, 11, 12syl2anc 587 . 2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
141, 2, 3ntrclsnvobr 40755 . . . 4 (𝜑𝐾𝐷𝐼)
15 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
161, 2, 14, 15ntrclsfv 40762 . . 3 (𝜑 → (𝐾𝑆) = (𝐵 ∖ (𝐼‘(𝐵𝑆))))
1716eqeq1d 2800 . 2 (𝜑 → ((𝐾𝑆) = (𝐵𝐶) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
1813, 17bitr4d 285 1 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator