Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq2 Structured version   Visualization version   GIF version

Theorem ntrclsfveq2 44159
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.c (𝜑𝐶 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑘)   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq2
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsiex 44151 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8779 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
72, 3ntrclsrcomplex 44133 . . . . 5 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
86, 7ffvelcdmd 7024 . . . 4 (𝜑 → (𝐼‘(𝐵𝑆)) ∈ 𝒫 𝐵)
98elpwid 4558 . . 3 (𝜑 → (𝐼‘(𝐵𝑆)) ⊆ 𝐵)
10 ntrclsfv.c . . . 4 (𝜑𝐶 ∈ 𝒫 𝐵)
1110elpwid 4558 . . 3 (𝜑𝐶𝐵)
12 rcompleq 4254 . . 3 (((𝐼‘(𝐵𝑆)) ⊆ 𝐵𝐶𝐵) → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
139, 11, 12syl2anc 584 . 2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
141, 2, 3ntrclsnvobr 44150 . . . 4 (𝜑𝐾𝐷𝐼)
15 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
161, 2, 14, 15ntrclsfv 44157 . . 3 (𝜑 → (𝐾𝑆) = (𝐵 ∖ (𝐼‘(𝐵𝑆))))
1716eqeq1d 2733 . 2 (𝜑 → ((𝐾𝑆) = (𝐵𝐶) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
1813, 17bitr4d 282 1 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  𝒫 cpw 4549   class class class wbr 5093  cmpt 5174  wf 6483  cfv 6487  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator