Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq2 Structured version   Visualization version   GIF version

Theorem ntrclsfveq2 44023
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.c (𝜑𝐶 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑘)   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq2
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsiex 44015 . . . . . 6 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
5 elmapi 8907 . . . . . 6 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
72, 3ntrclsrcomplex 43997 . . . . 5 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
86, 7ffvelcdmd 7119 . . . 4 (𝜑 → (𝐼‘(𝐵𝑆)) ∈ 𝒫 𝐵)
98elpwid 4631 . . 3 (𝜑 → (𝐼‘(𝐵𝑆)) ⊆ 𝐵)
10 ntrclsfv.c . . . 4 (𝜑𝐶 ∈ 𝒫 𝐵)
1110elpwid 4631 . . 3 (𝜑𝐶𝐵)
12 rcompleq 4324 . . 3 (((𝐼‘(𝐵𝑆)) ⊆ 𝐵𝐶𝐵) → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
139, 11, 12syl2anc 583 . 2 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
141, 2, 3ntrclsnvobr 44014 . . . 4 (𝜑𝐾𝐷𝐼)
15 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
161, 2, 14, 15ntrclsfv 44021 . . 3 (𝜑 → (𝐾𝑆) = (𝐵 ∖ (𝐼‘(𝐵𝑆))))
1716eqeq1d 2742 . 2 (𝜑 → ((𝐾𝑆) = (𝐵𝐶) ↔ (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐵𝐶)))
1813, 17bitr4d 282 1 (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator