Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq2 | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.c | ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfveq2 | ⊢ (𝜑 → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐾‘𝑆) = (𝐵 ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsiex 41552 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | elmapi 8595 | . . . . . 6 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 2, 3 | ntrclsrcomplex 41534 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
8 | 6, 7 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐼‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
9 | 8 | elpwid 4541 | . . 3 ⊢ (𝜑 → (𝐼‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
10 | ntrclsfv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | |
11 | 10 | elpwid 4541 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
12 | rcompleq 4226 | . . 3 ⊢ (((𝐼‘(𝐵 ∖ 𝑆)) ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ 𝐶))) | |
13 | 9, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ 𝐶))) |
14 | 1, 2, 3 | ntrclsnvobr 41551 | . . . 4 ⊢ (𝜑 → 𝐾𝐷𝐼) |
15 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
16 | 1, 2, 14, 15 | ntrclsfv 41558 | . . 3 ⊢ (𝜑 → (𝐾‘𝑆) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑆)))) |
17 | 16 | eqeq1d 2740 | . 2 ⊢ (𝜑 → ((𝐾‘𝑆) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ 𝐶))) |
18 | 13, 17 | bitr4d 281 | 1 ⊢ (𝜑 → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐾‘𝑆) = (𝐵 ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |