Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk4 Structured version   Visualization version   GIF version

Theorem ntrclsk4 42334
Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk4 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝑗,𝐾   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk4
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6847 . . . 4 (𝑠 = 𝑡 → (𝐼‘(𝐼𝑠)) = (𝐼‘(𝐼𝑡)))
2 fveq2 6842 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
31, 2eqeq12d 2752 . . 3 (𝑠 = 𝑡 → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼‘(𝐼𝑡)) = (𝐼𝑡)))
43cbvralvw 3225 . 2 (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑡)) = (𝐼𝑡))
5 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
6 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
75, 6ntrclsrcomplex 42297 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
87adantr 481 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
95, 6ntrclsrcomplex 42297 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
109adantr 481 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
11 difeq2 4076 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1211eqeq2d 2747 . . . . 5 (𝑠 = (𝐵𝑡) → (𝑡 = (𝐵𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵𝑡))))
1312adantl 482 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝑡 = (𝐵𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵𝑡))))
14 elpwi 4567 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
15 dfss4 4218 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1614, 15sylib 217 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1716eqcomd 2742 . . . . 5 (𝑡 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ (𝐵𝑡)))
1817adantl 482 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → 𝑡 = (𝐵 ∖ (𝐵𝑡)))
1910, 13, 18rspcedvd 3583 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
20 2fveq3 6847 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼‘(𝐼𝑡)) = (𝐼‘(𝐼‘(𝐵𝑠))))
21 fveq2 6842 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
2220, 21eqeq12d 2752 . . . . 5 (𝑡 = (𝐵𝑠) → ((𝐼‘(𝐼𝑡)) = (𝐼𝑡) ↔ (𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠))))
23223ad2ant3 1135 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐼𝑡)) = (𝐼𝑡) ↔ (𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠))))
24 ntrcls.o . . . . . . . . . . . 12 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2524, 5, 6ntrclsiex 42315 . . . . . . . . . . 11 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
26 elmapi 8787 . . . . . . . . . . 11 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2725, 26syl 17 . . . . . . . . . 10 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
2827, 7ffvelcdmd 7036 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
2927, 28ffvelcdmd 7036 . . . . . . . . 9 (𝜑 → (𝐼‘(𝐼‘(𝐵𝑠))) ∈ 𝒫 𝐵)
3029elpwid 4569 . . . . . . . 8 (𝜑 → (𝐼‘(𝐼‘(𝐵𝑠))) ⊆ 𝐵)
3128elpwid 4569 . . . . . . . 8 (𝜑 → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
32 rcompleq 4255 . . . . . . . 8 (((𝐼‘(𝐼‘(𝐵𝑠))) ⊆ 𝐵 ∧ (𝐼‘(𝐵𝑠)) ⊆ 𝐵) → ((𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
3330, 31, 32syl2anc 584 . . . . . . 7 (𝜑 → ((𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
3433adantr 481 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
3524, 5, 6ntrclsnvobr 42314 . . . . . . . . . 10 (𝜑𝐾𝐷𝐼)
3635adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐾𝐷𝐼)
3724, 5, 35ntrclsiex 42315 . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
38 elmapi 8787 . . . . . . . . . . 11 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
3937, 38syl 17 . . . . . . . . . 10 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
4039ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐾𝑠) ∈ 𝒫 𝐵)
4124, 5, 36, 40ntrclsfv 42321 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐾‘(𝐾𝑠)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝐾𝑠)))))
42 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
4324, 5, 36, 42ntrclsfv 42321 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐾𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
4443difeq2d 4082 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐾𝑠)) = (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
45 dfss4 4218 . . . . . . . . . . . . 13 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵𝑠)))) = (𝐼‘(𝐵𝑠)))
4631, 45sylib 217 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵𝑠)))) = (𝐼‘(𝐵𝑠)))
4746adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵 ∖ (𝐼‘(𝐵𝑠)))) = (𝐼‘(𝐵𝑠)))
4844, 47eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐾𝑠)) = (𝐼‘(𝐵𝑠)))
4948fveq2d 6846 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐵 ∖ (𝐾𝑠))) = (𝐼‘(𝐼‘(𝐵𝑠))))
5049difeq2d 4082 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝐾𝑠)))) = (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))))
5141, 50eqtrd 2776 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐾‘(𝐾𝑠)) = (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))))
5251, 43eqeq12d 2752 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐾‘(𝐾𝑠)) = (𝐾𝑠) ↔ (𝐵 ∖ (𝐼‘(𝐼‘(𝐵𝑠)))) = (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
5334, 52bitr4d 281 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠)) ↔ (𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
54533adant3 1132 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐼‘(𝐵𝑠))) = (𝐼‘(𝐵𝑠)) ↔ (𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
5523, 54bitrd 278 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐼𝑡)) = (𝐼𝑡) ↔ (𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
568, 19, 55ralxfrd2 5367 . 2 (𝜑 → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑡)) = (𝐼𝑡) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
574, 56bitrid 282 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cdif 3907  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator