|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq1 | Structured version Visualization version GIF version | ||
| Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | 
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) | 
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) | 
| ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | 
| ntrclsfv.c | ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | 
| Ref | Expression | 
|---|---|
| ntrclsfveq1 | ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrclsfv.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4609 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | 
| 3 | dfss4 4269 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) | 
| 5 | 4 | eqcomd 2743 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐵 ∖ (𝐵 ∖ 𝐶))) | 
| 6 | 5 | eqeq2d 2748 | . 2 ⊢ (𝜑 → ((𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | 
| 7 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 8 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 9 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 10 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | 7, 8, 9, 10 | ntrclsfv 44072 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) | 
| 12 | 11 | eqeq1d 2739 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶)) | 
| 13 | 7, 8, 9 | ntrclskex 44067 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 14 | elmapi 8889 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | 
| 16 | 8, 9 | ntrclsrcomplex 44048 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | 
| 17 | 15, 16 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) | 
| 18 | 17 | elpwid 4609 | . . 3 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) | 
| 19 | difssd 4137 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐶) ⊆ 𝐵) | |
| 20 | rcompleq 4305 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵 ∧ (𝐵 ∖ 𝐶) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | 
| 22 | 6, 12, 21 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 | 
| This theorem is referenced by: ntrclsfveq 44075 | 
| Copyright terms: Public domain | W3C validator |