Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfveq1 Structured version   Visualization version   GIF version

Theorem ntrclsfveq1 40403
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.c (𝜑𝐶 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfveq1 (𝜑 → ((𝐼𝑆) = 𝐶 ↔ (𝐾‘(𝐵𝑆)) = (𝐵𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑘)   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfveq1
StepHypRef Expression
1 ntrclsfv.c . . . . . 6 (𝜑𝐶 ∈ 𝒫 𝐵)
21elpwid 4553 . . . . 5 (𝜑𝐶𝐵)
3 dfss4 4235 . . . . 5 (𝐶𝐵 ↔ (𝐵 ∖ (𝐵𝐶)) = 𝐶)
42, 3sylib 220 . . . 4 (𝜑 → (𝐵 ∖ (𝐵𝐶)) = 𝐶)
54eqcomd 2827 . . 3 (𝜑𝐶 = (𝐵 ∖ (𝐵𝐶)))
65eqeq2d 2832 . 2 (𝜑 → ((𝐵 ∖ (𝐾‘(𝐵𝑆))) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) = (𝐵 ∖ (𝐵𝐶))))
7 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
8 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
9 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
10 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
117, 8, 9, 10ntrclsfv 40402 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
1211eqeq1d 2823 . 2 (𝜑 → ((𝐼𝑆) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) = 𝐶))
137, 8, 9ntrclskex 40397 . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
14 elmapi 8422 . . . . . 6 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . 5 (𝜑𝐾:𝒫 𝐵⟶𝒫 𝐵)
168, 9ntrclsrcomplex 40378 . . . . 5 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
1715, 16ffvelrnd 6847 . . . 4 (𝜑 → (𝐾‘(𝐵𝑆)) ∈ 𝒫 𝐵)
1817elpwid 4553 . . 3 (𝜑 → (𝐾‘(𝐵𝑆)) ⊆ 𝐵)
19 difssd 4109 . . 3 (𝜑 → (𝐵𝐶) ⊆ 𝐵)
20 rcompleq 40363 . . 3 (((𝐾‘(𝐵𝑆)) ⊆ 𝐵 ∧ (𝐵𝐶) ⊆ 𝐵) → ((𝐾‘(𝐵𝑆)) = (𝐵𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) = (𝐵 ∖ (𝐵𝐶))))
2118, 19, 20syl2anc 586 . 2 (𝜑 → ((𝐾‘(𝐵𝑆)) = (𝐵𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) = (𝐵 ∖ (𝐵𝐶))))
226, 12, 213bitr4d 313 1 (𝜑 → ((𝐼𝑆) = 𝐶 ↔ (𝐾‘(𝐵𝑆)) = (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  Vcvv 3495  cdif 3933  wss 3936  𝒫 cpw 4539   class class class wbr 5059  cmpt 5139  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by:  ntrclsfveq  40405
  Copyright terms: Public domain W3C validator