![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq1 | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.c | ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfveq1 | ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsfv.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4631 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
3 | dfss4 4288 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) | |
4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) |
5 | 4 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐵 ∖ (𝐵 ∖ 𝐶))) |
6 | 5 | eqeq2d 2751 | . 2 ⊢ (𝜑 → ((𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
7 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
8 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
9 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
10 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
11 | 7, 8, 9, 10 | ntrclsfv 44021 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
12 | 11 | eqeq1d 2742 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶)) |
13 | 7, 8, 9 | ntrclskex 44016 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | elmapi 8907 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
16 | 8, 9 | ntrclsrcomplex 43997 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
17 | 15, 16 | ffvelcdmd 7119 | . . . 4 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
18 | 17 | elpwid 4631 | . . 3 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
19 | difssd 4160 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐶) ⊆ 𝐵) | |
20 | rcompleq 4324 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵 ∧ (𝐵 ∖ 𝐶) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | |
21 | 18, 19, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
22 | 6, 12, 21 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: ntrclsfveq 44024 |
Copyright terms: Public domain | W3C validator |