Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfveq1 | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.c | ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfveq1 | ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsfv.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4544 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
3 | dfss4 4192 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝐶)) = 𝐶) |
5 | 4 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐵 ∖ (𝐵 ∖ 𝐶))) |
6 | 5 | eqeq2d 2749 | . 2 ⊢ (𝜑 → ((𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
7 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
8 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
9 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
10 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
11 | 7, 8, 9, 10 | ntrclsfv 41669 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
12 | 11 | eqeq1d 2740 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = 𝐶)) |
13 | 7, 8, 9 | ntrclskex 41664 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | elmapi 8637 | . . . . . 6 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
16 | 8, 9 | ntrclsrcomplex 41645 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
17 | 15, 16 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
18 | 17 | elpwid 4544 | . . 3 ⊢ (𝜑 → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
19 | difssd 4067 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝐶) ⊆ 𝐵) | |
20 | rcompleq 4229 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵 ∧ (𝐵 ∖ 𝐶) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) | |
21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) = (𝐵 ∖ (𝐵 ∖ 𝐶)))) |
22 | 6, 12, 21 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: ntrclsfveq 41672 |
Copyright terms: Public domain | W3C validator |