![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fununfun | Structured version Visualization version GIF version |
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
Ref | Expression |
---|---|
fununfun | ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6519 | . . 3 ⊢ (Fun (𝐹 ∪ 𝐺) → Rel (𝐹 ∪ 𝐺)) | |
2 | relun 5768 | . . 3 ⊢ (Rel (𝐹 ∪ 𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → (Rel 𝐹 ∧ Rel 𝐺)) |
4 | simpl 484 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹) | |
5 | fununmo 6549 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | |
6 | 5 | alrimiv 1931 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
7 | 4, 6 | anim12i 614 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
8 | dffun6 6510 | . . . 4 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐹) |
10 | simpr 486 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺) | |
11 | uncom 4114 | . . . . . . . 8 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
12 | 11 | funeqi 6523 | . . . . . . 7 ⊢ (Fun (𝐹 ∪ 𝐺) ↔ Fun (𝐺 ∪ 𝐹)) |
13 | fununmo 6549 | . . . . . . 7 ⊢ (Fun (𝐺 ∪ 𝐹) → ∃*𝑦 𝑥𝐺𝑦) | |
14 | 12, 13 | sylbi 216 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐺𝑦) |
15 | 14 | alrimiv 1931 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦) |
16 | 10, 15 | anim12i 614 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) |
17 | dffun6 6510 | . . . 4 ⊢ (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐺) |
19 | 9, 18 | jca 513 | . 2 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Fun 𝐹 ∧ Fun 𝐺)) |
20 | 3, 19 | mpancom 687 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 ∃*wmo 2533 ∪ cun 3909 class class class wbr 5106 Rel wrel 5639 Fun wfun 6491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-fun 6499 |
This theorem is referenced by: fsuppunbi 9331 |
Copyright terms: Public domain | W3C validator |