MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununfun Structured version   Visualization version   GIF version

Theorem fununfun 6593
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))

Proof of Theorem fununfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6562 . . 3 (Fun (𝐹𝐺) → Rel (𝐹𝐺))
2 relun 5809 . . 3 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
31, 2sylib 217 . 2 (Fun (𝐹𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 simpl 483 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹)
5 fununmo 6592 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
65alrimiv 1930 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
74, 6anim12i 613 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
8 dffun6 6553 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
97, 8sylibr 233 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐹)
10 simpr 485 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺)
11 uncom 4152 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
1211funeqi 6566 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
13 fununmo 6592 . . . . . . 7 (Fun (𝐺𝐹) → ∃*𝑦 𝑥𝐺𝑦)
1412, 13sylbi 216 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐺𝑦)
1514alrimiv 1930 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦)
1610, 15anim12i 613 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
17 dffun6 6553 . . . 4 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
1816, 17sylibr 233 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐺)
199, 18jca 512 . 2 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Fun 𝐹 ∧ Fun 𝐺))
203, 19mpancom 686 1 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  ∃*wmo 2532  cun 3945   class class class wbr 5147  Rel wrel 5680  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-fun 6542
This theorem is referenced by:  fsuppunbi  9380
  Copyright terms: Public domain W3C validator