Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fununfun | Structured version Visualization version GIF version |
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
Ref | Expression |
---|---|
fununfun | ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6468 | . . 3 ⊢ (Fun (𝐹 ∪ 𝐺) → Rel (𝐹 ∪ 𝐺)) | |
2 | relun 5724 | . . 3 ⊢ (Rel (𝐹 ∪ 𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → (Rel 𝐹 ∧ Rel 𝐺)) |
4 | simpl 482 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹) | |
5 | fununmo 6498 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | |
6 | 5 | alrimiv 1926 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
7 | 4, 6 | anim12i 612 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
8 | dffun6 6459 | . . . 4 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐹) |
10 | simpr 484 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺) | |
11 | uncom 4090 | . . . . . . . 8 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
12 | 11 | funeqi 6472 | . . . . . . 7 ⊢ (Fun (𝐹 ∪ 𝐺) ↔ Fun (𝐺 ∪ 𝐹)) |
13 | fununmo 6498 | . . . . . . 7 ⊢ (Fun (𝐺 ∪ 𝐹) → ∃*𝑦 𝑥𝐺𝑦) | |
14 | 12, 13 | sylbi 216 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐺𝑦) |
15 | 14 | alrimiv 1926 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦) |
16 | 10, 15 | anim12i 612 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) |
17 | dffun6 6459 | . . . 4 ⊢ (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐺) |
19 | 9, 18 | jca 511 | . 2 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Fun 𝐹 ∧ Fun 𝐺)) |
20 | 3, 19 | mpancom 684 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃*wmo 2533 ∪ cun 3887 class class class wbr 5077 Rel wrel 5596 Fun wfun 6441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-11 2149 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-fun 6449 |
This theorem is referenced by: fsuppunbi 9177 |
Copyright terms: Public domain | W3C validator |