MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fununfun Structured version   Visualization version   GIF version

Theorem fununfun 6114
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))

Proof of Theorem fununfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6084 . . 3 (Fun (𝐹𝐺) → Rel (𝐹𝐺))
2 relun 5402 . . 3 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
31, 2sylib 209 . 2 (Fun (𝐹𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 simpl 474 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹)
5 fununmo 6113 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐹𝑦)
65alrimiv 2022 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
74, 6anim12i 606 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
8 dffun6 6082 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
97, 8sylibr 225 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐹)
10 simpr 477 . . . . 5 ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺)
11 uncom 3918 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
1211funeqi 6088 . . . . . . 7 (Fun (𝐹𝐺) ↔ Fun (𝐺𝐹))
13 fununmo 6113 . . . . . . 7 (Fun (𝐺𝐹) → ∃*𝑦 𝑥𝐺𝑦)
1412, 13sylbi 208 . . . . . 6 (Fun (𝐹𝐺) → ∃*𝑦 𝑥𝐺𝑦)
1514alrimiv 2022 . . . . 5 (Fun (𝐹𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦)
1610, 15anim12i 606 . . . 4 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
17 dffun6 6082 . . . 4 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦))
1816, 17sylibr 225 . . 3 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → Fun 𝐺)
199, 18jca 507 . 2 (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹𝐺)) → (Fun 𝐹 ∧ Fun 𝐺))
203, 19mpancom 679 1 (Fun (𝐹𝐺) → (Fun 𝐹 ∧ Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1650  ∃*wmo 2562  cun 3729   class class class wbr 4808  Rel wrel 5281  Fun wfun 6061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pr 5061
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3351  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-sn 4334  df-pr 4336  df-op 4340  df-br 4809  df-opab 4871  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-fun 6069
This theorem is referenced by:  fsuppunbi  8502
  Copyright terms: Public domain W3C validator