| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fununfun | Structured version Visualization version GIF version | ||
| Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.) |
| Ref | Expression |
|---|---|
| fununfun | ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6558 | . . 3 ⊢ (Fun (𝐹 ∪ 𝐺) → Rel (𝐹 ∪ 𝐺)) | |
| 2 | relun 5795 | . . 3 ⊢ (Rel (𝐹 ∪ 𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → (Rel 𝐹 ∧ Rel 𝐺)) |
| 4 | simpl 482 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐹) | |
| 5 | fununmo 6588 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) | |
| 6 | 5 | alrimiv 1927 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
| 7 | 4, 6 | anim12i 613 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| 8 | dffun6 6549 | . . . 4 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐹) |
| 10 | simpr 484 | . . . . 5 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → Rel 𝐺) | |
| 11 | uncom 4138 | . . . . . . . 8 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 12 | 11 | funeqi 6562 | . . . . . . 7 ⊢ (Fun (𝐹 ∪ 𝐺) ↔ Fun (𝐺 ∪ 𝐹)) |
| 13 | fununmo 6588 | . . . . . . 7 ⊢ (Fun (𝐺 ∪ 𝐹) → ∃*𝑦 𝑥𝐺𝑦) | |
| 14 | 12, 13 | sylbi 217 | . . . . . 6 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐺𝑦) |
| 15 | 14 | alrimiv 1927 | . . . . 5 ⊢ (Fun (𝐹 ∪ 𝐺) → ∀𝑥∃*𝑦 𝑥𝐺𝑦) |
| 16 | 10, 15 | anim12i 613 | . . . 4 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) |
| 17 | dffun6 6549 | . . . 4 ⊢ (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥∃*𝑦 𝑥𝐺𝑦)) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → Fun 𝐺) |
| 19 | 9, 18 | jca 511 | . 2 ⊢ (((Rel 𝐹 ∧ Rel 𝐺) ∧ Fun (𝐹 ∪ 𝐺)) → (Fun 𝐹 ∧ Fun 𝐺)) |
| 20 | 3, 19 | mpancom 688 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → (Fun 𝐹 ∧ Fun 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃*wmo 2538 ∪ cun 3929 class class class wbr 5124 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: fsuppunbi 9406 |
| Copyright terms: Public domain | W3C validator |