Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unixpss | Structured version Visualization version GIF version |
Description: The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
unixpss | ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5688 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | 1 | unissi 4837 | . . . 4 ⊢ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) |
3 | unipw 5344 | . . . 4 ⊢ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) = 𝒫 (𝐴 ∪ 𝐵) | |
4 | 2, 3 | sseqtri 3946 | . . 3 ⊢ ∪ (𝐴 × 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
5 | 4 | unissi 4837 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 (𝐴 ∪ 𝐵) |
6 | unipw 5344 | . 2 ⊢ ∪ 𝒫 (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
7 | 5, 6 | sseqtri 3946 | 1 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3873 ⊆ wss 3875 𝒫 cpw 4522 ∪ cuni 4828 × cxp 5558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pr 5331 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3417 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-opab 5125 df-xp 5566 df-rel 5567 |
This theorem is referenced by: relfld 6147 filnetlem3 34319 |
Copyright terms: Public domain | W3C validator |