MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpss Structured version   Visualization version   GIF version

Theorem unixpss 5754
Description: The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss (𝐴 × 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 5753 . . . . 5 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
21unissi 4867 . . . 4 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
3 unipw 5393 . . . 4 𝒫 𝒫 (𝐴𝐵) = 𝒫 (𝐴𝐵)
42, 3sseqtri 3979 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
54unissi 4867 . 2 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
6 unipw 5393 . 2 𝒫 (𝐴𝐵) = (𝐴𝐵)
75, 6sseqtri 3979 1 (𝐴 × 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cun 3896  wss 3898  𝒫 cpw 4549   cuni 4858   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-opab 5156  df-xp 5625  df-rel 5626
This theorem is referenced by:  relfld  6227  filnetlem3  36445
  Copyright terms: Public domain W3C validator