MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpss Structured version   Visualization version   GIF version

Theorem unixpss 5794
Description: The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss (𝐴 × 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 5793 . . . . 5 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
21unissi 4897 . . . 4 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
3 unipw 5430 . . . 4 𝒫 𝒫 (𝐴𝐵) = 𝒫 (𝐴𝐵)
42, 3sseqtri 4012 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
54unissi 4897 . 2 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
6 unipw 5430 . 2 𝒫 (𝐴𝐵) = (𝐴𝐵)
75, 6sseqtri 4012 1 (𝐴 × 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cun 3929  wss 3931  𝒫 cpw 4580   cuni 4888   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-opab 5187  df-xp 5665  df-rel 5666
This theorem is referenced by:  relfld  6269  filnetlem3  36403
  Copyright terms: Public domain W3C validator