![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unixpss | Structured version Visualization version GIF version |
Description: The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
unixpss | ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5833 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | 1 | unissi 4940 | . . . 4 ⊢ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) |
3 | unipw 5470 | . . . 4 ⊢ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) = 𝒫 (𝐴 ∪ 𝐵) | |
4 | 2, 3 | sseqtri 4045 | . . 3 ⊢ ∪ (𝐴 × 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
5 | 4 | unissi 4940 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 (𝐴 ∪ 𝐵) |
6 | unipw 5470 | . 2 ⊢ ∪ 𝒫 (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
7 | 5, 6 | sseqtri 4045 | 1 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: relfld 6306 filnetlem3 36346 |
Copyright terms: Public domain | W3C validator |