![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unixpss | Structured version Visualization version GIF version |
Description: The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
unixpss | ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5809 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | 1 | unissi 4917 | . . . 4 ⊢ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) |
3 | unipw 5450 | . . . 4 ⊢ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) = 𝒫 (𝐴 ∪ 𝐵) | |
4 | 2, 3 | sseqtri 4018 | . . 3 ⊢ ∪ (𝐴 × 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
5 | 4 | unissi 4917 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 (𝐴 ∪ 𝐵) |
6 | unipw 5450 | . 2 ⊢ ∪ 𝒫 (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
7 | 5, 6 | sseqtri 4018 | 1 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3946 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: relfld 6274 filnetlem3 35260 |
Copyright terms: Public domain | W3C validator |