Step | Hyp | Ref
| Expression |
1 | | difss 4066 |
. . 3
⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ⊆ (𝐶 × 𝐷) |
2 | | relxp 5607 |
. . 3
⊢ Rel
(𝐶 × 𝐷) |
3 | | relss 5692 |
. . 3
⊢ (((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ⊆ (𝐶 × 𝐷) → (Rel (𝐶 × 𝐷) → Rel ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)))) |
4 | 1, 2, 3 | mp2 9 |
. 2
⊢ Rel
((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) |
5 | | relxp 5607 |
. . 3
⊢ Rel
((𝐶 ∖ 𝐴) × 𝐷) |
6 | | relxp 5607 |
. . 3
⊢ Rel
(𝐶 × (𝐷 ∖ 𝐵)) |
7 | | relun 5721 |
. . 3
⊢ (Rel
(((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (Rel ((𝐶 ∖ 𝐴) × 𝐷) ∧ Rel (𝐶 × (𝐷 ∖ 𝐵)))) |
8 | 5, 6, 7 | mpbir2an 708 |
. 2
⊢ Rel
(((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) |
9 | | ianor 979 |
. . . . . 6
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵)) |
10 | 9 | anbi2i 623 |
. . . . 5
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵))) |
11 | | andi 1005 |
. . . . 5
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐵)) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
12 | 10, 11 | bitri 274 |
. . . 4
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
13 | | opelxp 5625 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) |
14 | | opelxp 5625 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
15 | 14 | notbii 320 |
. . . . 5
⊢ (¬
〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
16 | 13, 15 | anbi12i 627 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
17 | | opelxp 5625 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ↔ (𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷)) |
18 | | eldif 3897 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) |
19 | 18 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐷)) |
20 | | an32 643 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
21 | 19, 20 | bitri 274 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐶 ∖ 𝐴) ∧ 𝑦 ∈ 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
22 | 17, 21 | bitri 274 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴)) |
23 | | eldif 3897 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐷 ∖ 𝐵) ↔ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵)) |
24 | 23 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐷 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐶 ∧ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵))) |
25 | | opelxp 5625 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐷 ∖ 𝐵))) |
26 | | anass 469 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ 𝐵))) |
27 | 24, 25, 26 | 3bitr4i 303 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵)) |
28 | 22, 27 | orbi12i 912 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑥 ∈ 𝐴) ∨ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ 𝐵))) |
29 | 12, 16, 28 | 3bitr4i 303 |
. . 3
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)))) |
30 | | eldif 3897 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 × 𝐷) ∧ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) |
31 | | elun 4083 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) ↔ (〈𝑥, 𝑦〉 ∈ ((𝐶 ∖ 𝐴) × 𝐷) ∨ 〈𝑥, 𝑦〉 ∈ (𝐶 × (𝐷 ∖ 𝐵)))) |
32 | 29, 30, 31 | 3bitr4i 303 |
. 2
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) ↔ 〈𝑥, 𝑦〉 ∈ (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵)))) |
33 | 4, 8, 32 | eqrelriiv 5700 |
1
⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) |