| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | reu3 3732 | . 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧))) | 
| 2 |  | rmo4.1 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 3 |  | equequ1 2023 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | 
| 4 |  | equcom 2016 | . . . . . . . 8
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) | 
| 5 | 3, 4 | bitrdi 287 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑧 = 𝑦)) | 
| 6 | 2, 5 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑧 = 𝑦))) | 
| 7 | 6 | cbvralvw 3236 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦)) | 
| 8 | 7 | rexbii 3093 | . . . 4
⊢
(∃𝑧 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦)) | 
| 9 |  | equequ1 2023 | . . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 ↔ 𝑥 = 𝑦)) | 
| 10 | 9 | imbi2d 340 | . . . . . 6
⊢ (𝑧 = 𝑥 → ((𝜓 → 𝑧 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) | 
| 11 | 10 | ralbidv 3177 | . . . . 5
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 12 | 11 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑧 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | 
| 13 | 8, 12 | bitri 275 | . . 3
⊢
(∃𝑧 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | 
| 14 | 13 | anbi2i 623 | . 2
⊢
((∃𝑥 ∈
𝐴 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 15 | 1, 14 | bitri 275 | 1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |