MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwrepswhash1 Structured version   Visualization version   GIF version

Theorem cshwrepswhash1 17041
Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwrepswhash1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤   𝐴,𝑛,𝑤   𝑛,𝑁,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwrepswhash1
Dummy variables 𝑖 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12484 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 repsdf2 14733 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
31, 2sylan2 592 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
4 simp1 1135 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑊 ∈ Word 𝑉)
54adantl 481 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 𝑊 ∈ Word 𝑉)
6 eleq1 2820 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
76eqcoms 2739 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
8 lbfzo0 13677 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
98biimpri 227 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → 0 ∈ (0..^(♯‘𝑊)))
107, 9syl6bi 253 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
11103ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
1211com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1312adantl 481 . . . . . . . . . . 11 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1413imp 406 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 0 ∈ (0..^(♯‘𝑊)))
15 cshw0 14749 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
165, 15syl 17 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → (𝑊 cyclShift 0) = 𝑊)
17 oveq2 7420 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 0))
1817eqeq1d 2733 . . . . . . . . . . 11 (𝑛 = 0 → ((𝑊 cyclShift 𝑛) = 𝑊 ↔ (𝑊 cyclShift 0) = 𝑊))
1918rspcev 3612 . . . . . . . . . 10 ((0 ∈ (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 0) = 𝑊) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
2014, 16, 19syl2anc 583 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
21 eqeq2 2743 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑊))
2221rexbidv 3177 . . . . . . . . . 10 (𝑤 = 𝑊 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊))
2322rspcev 3612 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
245, 20, 23syl2anc 583 . . . . . . . 8 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
2524ex 412 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
263, 25sylbid 239 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
27263impia 1116 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
28 repsw 14730 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
291, 28sylan2 592 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
30293adant3 1131 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
31 simpll3 1213 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑊 = (𝐴 repeatS 𝑁))
3231oveq1d 7427 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = ((𝐴 repeatS 𝑁) cyclShift 𝑛))
33 simp1 1135 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝐴𝑉)
3433ad2antrr 723 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝐴𝑉)
3513ad2ant2 1133 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑁 ∈ ℕ0)
3635ad2antrr 723 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℕ0)
37 elfzoelz 13637 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(♯‘𝑊)) → 𝑛 ∈ ℤ)
3837adantl 481 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑛 ∈ ℤ)
39 repswcshw 14767 . . . . . . . . . . . 12 ((𝐴𝑉𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4034, 36, 38, 39syl3anc 1370 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4132, 40eqtrd 2771 . . . . . . . . . 10 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4241eqeq1d 2733 . . . . . . . . 9 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4342biimpd 228 . . . . . . . 8 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4443rexlimdva 3154 . . . . . . 7 (((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4544ralrimiva 3145 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
46 eqeq1 2735 . . . . . . . . 9 (𝑤 = (𝐴 repeatS 𝑁) → (𝑤 = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4746imbi2d 340 . . . . . . . 8 (𝑤 = (𝐴 repeatS 𝑁) → ((∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4847ralbidv 3176 . . . . . . 7 (𝑤 = (𝐴 repeatS 𝑁) → (∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4948rspcev 3612 . . . . . 6 (((𝐴 repeatS 𝑁) ∈ Word 𝑉 ∧ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
5030, 45, 49syl2anc 583 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
51 eqeq2 2743 . . . . . . 7 (𝑤 = 𝑢 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑢))
5251rexbidv 3177 . . . . . 6 (𝑤 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢))
5352reu7 3728 . . . . 5 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ (∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ∧ ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢)))
5427, 50, 53sylanbrc 582 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
55 reusn 4731 . . . 4 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5654, 55sylib 217 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
57 cshwrepswhash1.m . . . . 5 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
5857eqeq1i 2736 . . . 4 (𝑀 = {𝑟} ↔ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5958exbii 1849 . . 3 (∃𝑟 𝑀 = {𝑟} ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
6056, 59sylibr 233 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟 𝑀 = {𝑟})
6157cshwsex 17039 . . . . . 6 (𝑊 ∈ Word 𝑉𝑀 ∈ V)
62613ad2ant1 1132 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑀 ∈ V)
633, 62syl6bi 253 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → 𝑀 ∈ V))
64633impia 1116 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑀 ∈ V)
65 hash1snb 14384 . . 3 (𝑀 ∈ V → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6664, 65syl 17 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6760, 66mpbird 257 1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  ∃!wreu 3373  {crab 3431  Vcvv 3473  {csn 4628  cfv 6543  (class class class)co 7412  0cc0 11114  1c1 11115  cn 12217  0cn0 12477  cz 12563  ..^cfzo 13632  chash 14295  Word cword 14469   repeatS creps 14723   cyclShift ccsh 14743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-hash 14296  df-word 14470  df-concat 14526  df-substr 14596  df-pfx 14626  df-reps 14724  df-csh 14744
This theorem is referenced by:  cshwshash  17043
  Copyright terms: Public domain W3C validator