MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwrepswhash1 Structured version   Visualization version   GIF version

Theorem cshwrepswhash1 17080
Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwrepswhash1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤   𝐴,𝑛,𝑤   𝑛,𝑁,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwrepswhash1
Dummy variables 𝑖 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12456 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 repsdf2 14750 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
31, 2sylan2 593 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
4 simp1 1136 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑊 ∈ Word 𝑉)
54adantl 481 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 𝑊 ∈ Word 𝑉)
6 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
76eqcoms 2738 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
8 lbfzo0 13667 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
98biimpri 228 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → 0 ∈ (0..^(♯‘𝑊)))
107, 9biimtrdi 253 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
11103ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
1211com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1312adantl 481 . . . . . . . . . . 11 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1413imp 406 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 0 ∈ (0..^(♯‘𝑊)))
15 cshw0 14766 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
165, 15syl 17 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → (𝑊 cyclShift 0) = 𝑊)
17 oveq2 7398 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 0))
1817eqeq1d 2732 . . . . . . . . . . 11 (𝑛 = 0 → ((𝑊 cyclShift 𝑛) = 𝑊 ↔ (𝑊 cyclShift 0) = 𝑊))
1918rspcev 3591 . . . . . . . . . 10 ((0 ∈ (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 0) = 𝑊) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
2014, 16, 19syl2anc 584 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
21 eqeq2 2742 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑊))
2221rexbidv 3158 . . . . . . . . . 10 (𝑤 = 𝑊 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊))
2322rspcev 3591 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
245, 20, 23syl2anc 584 . . . . . . . 8 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
2524ex 412 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
263, 25sylbid 240 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
27263impia 1117 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
28 repsw 14747 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
291, 28sylan2 593 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
30293adant3 1132 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
31 simpll3 1215 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑊 = (𝐴 repeatS 𝑁))
3231oveq1d 7405 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = ((𝐴 repeatS 𝑁) cyclShift 𝑛))
33 simp1 1136 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝐴𝑉)
3433ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝐴𝑉)
3513ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑁 ∈ ℕ0)
3635ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℕ0)
37 elfzoelz 13627 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(♯‘𝑊)) → 𝑛 ∈ ℤ)
3837adantl 481 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑛 ∈ ℤ)
39 repswcshw 14784 . . . . . . . . . . . 12 ((𝐴𝑉𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4034, 36, 38, 39syl3anc 1373 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4132, 40eqtrd 2765 . . . . . . . . . 10 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4241eqeq1d 2732 . . . . . . . . 9 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4342biimpd 229 . . . . . . . 8 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4443rexlimdva 3135 . . . . . . 7 (((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4544ralrimiva 3126 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
46 eqeq1 2734 . . . . . . . . 9 (𝑤 = (𝐴 repeatS 𝑁) → (𝑤 = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4746imbi2d 340 . . . . . . . 8 (𝑤 = (𝐴 repeatS 𝑁) → ((∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4847ralbidv 3157 . . . . . . 7 (𝑤 = (𝐴 repeatS 𝑁) → (∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4948rspcev 3591 . . . . . 6 (((𝐴 repeatS 𝑁) ∈ Word 𝑉 ∧ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
5030, 45, 49syl2anc 584 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
51 eqeq2 2742 . . . . . . 7 (𝑤 = 𝑢 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑢))
5251rexbidv 3158 . . . . . 6 (𝑤 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢))
5352reu7 3706 . . . . 5 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ (∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ∧ ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢)))
5427, 50, 53sylanbrc 583 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
55 reusn 4694 . . . 4 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5654, 55sylib 218 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
57 cshwrepswhash1.m . . . . 5 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
5857eqeq1i 2735 . . . 4 (𝑀 = {𝑟} ↔ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5958exbii 1848 . . 3 (∃𝑟 𝑀 = {𝑟} ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
6056, 59sylibr 234 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟 𝑀 = {𝑟})
6157cshwsex 17078 . . . . . 6 (𝑊 ∈ Word 𝑉𝑀 ∈ V)
62613ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑀 ∈ V)
633, 62biimtrdi 253 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → 𝑀 ∈ V))
64633impia 1117 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑀 ∈ V)
65 hash1snb 14391 . . 3 (𝑀 ∈ V → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6664, 65syl 17 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6760, 66mpbird 257 1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  {crab 3408  Vcvv 3450  {csn 4592  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302  Word cword 14485   repeatS creps 14740   cyclShift ccsh 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-reps 14741  df-csh 14761
This theorem is referenced by:  cshwshash  17082
  Copyright terms: Public domain W3C validator