![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rmo4 3726 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3061 ∃wrex 3070 ∃!wreu 3374 ∃*wrmo 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-mo 2534 df-eu 2563 df-clel 2810 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 |
This theorem is referenced by: reuind 3749 oawordeulem 8556 fin23lem23 10323 nqereu 10926 receu 11861 lbreu 12166 cju 12210 fprodser 15895 divalglem9 16346 ndvdssub 16354 qredeu 16597 pj1eu 19566 efgredeu 19622 lspsneu 20742 qtopeu 23227 qtophmeo 23328 minveclem7 24959 ig1peu 25696 coeeu 25746 plydivalg 25819 nocvxmin 27287 hlcgreu 27907 mirreu3 27943 trgcopyeu 28095 axcontlem2 28261 umgr2edg1 28506 umgr2edgneu 28509 usgredgreu 28513 uspgredg2vtxeu 28515 4cycl2vnunb 29581 frgr2wwlk1 29620 minvecolem7 30174 hlimreui 30530 riesz4i 31354 cdjreui 31723 xreceu 32126 cvmseu 34336 segconeu 35058 outsideofeu 35178 poimirlem4 36584 bfp 36784 exidu1 36816 rngoideu 36863 lshpsmreu 38071 cdleme 39523 lcfl7N 40464 mapdpg 40669 hdmap14lem6 40836 mpaaeu 41980 icceuelpart 46189 |
Copyright terms: Public domain | W3C validator |