Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3351 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rmo4 3676 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3061 ∃wrex 3070 ∃!wreu 3347 ∃*wrmo 3348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-mo 2538 df-eu 2567 df-clel 2814 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 |
This theorem is referenced by: reuind 3699 oawordeulem 8457 fin23lem23 10184 nqereu 10787 receu 11722 lbreu 12027 cju 12071 fprodser 15759 divalglem9 16210 ndvdssub 16218 qredeu 16461 pj1eu 19398 efgredeu 19454 lspsneu 20492 qtopeu 22974 qtophmeo 23075 minveclem7 24706 ig1peu 25443 coeeu 25493 plydivalg 25566 nocvxmin 27025 hlcgreu 27269 mirreu3 27305 trgcopyeu 27457 axcontlem2 27623 umgr2edg1 27868 umgr2edgneu 27871 usgredgreu 27875 uspgredg2vtxeu 27877 4cycl2vnunb 28943 frgr2wwlk1 28982 minvecolem7 29534 hlimreui 29890 riesz4i 30714 cdjreui 31083 xreceu 31483 cvmseu 33537 segconeu 34452 outsideofeu 34572 poimirlem4 35937 bfp 36138 exidu1 36170 rngoideu 36217 lshpsmreu 37427 cdleme 38879 lcfl7N 39820 mapdpg 40025 hdmap14lem6 40192 mpaaeu 41289 icceuelpart 45306 |
Copyright terms: Public domain | W3C validator |