| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3358 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3704 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3045 ∃wrex 3054 ∃!wreu 3354 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 df-clel 2804 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 |
| This theorem is referenced by: reuind 3727 oawordeulem 8521 fin23lem23 10286 nqereu 10889 receu 11830 lbreu 12140 cju 12189 fprodser 15922 divalglem9 16378 ndvdssub 16386 qredeu 16635 pj1eu 19633 efgredeu 19689 lspsneu 21040 qtopeu 23610 qtophmeo 23711 minveclem7 25342 ig1peu 26087 coeeu 26137 plydivalg 26214 nocvxmin 27697 hlcgreu 28552 mirreu3 28588 trgcopyeu 28740 axcontlem2 28899 umgr2edg1 29145 umgr2edgneu 29148 usgredgreu 29152 uspgredg2vtxeu 29154 4cycl2vnunb 30226 frgr2wwlk1 30265 minvecolem7 30819 hlimreui 31175 riesz4i 31999 cdjreui 32368 xreceu 32849 cvmseu 35270 segconeu 36006 outsideofeu 36126 poimirlem4 37625 bfp 37825 exidu1 37857 rngoideu 37904 lshpsmreu 39109 cdleme 40561 lcfl7N 41502 mapdpg 41707 hdmap14lem6 41874 rediveud 42438 mpaaeu 43146 icceuelpart 47441 isuspgrim0lem 47897 |
| Copyright terms: Public domain | W3C validator |