| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3345 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3690 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∃wrex 3053 ∃!wreu 3341 ∃*wrmo 3342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 |
| This theorem is referenced by: reuind 3713 oawordeulem 8472 fin23lem23 10220 nqereu 10823 receu 11765 lbreu 12075 cju 12124 fprodser 15856 divalglem9 16312 ndvdssub 16320 qredeu 16569 pj1eu 19575 efgredeu 19631 lspsneu 21030 qtopeu 23601 qtophmeo 23702 minveclem7 25333 ig1peu 26078 coeeu 26128 plydivalg 26205 nocvxmin 27689 hlcgreu 28563 mirreu3 28599 trgcopyeu 28751 axcontlem2 28910 umgr2edg1 29156 umgr2edgneu 29159 usgredgreu 29163 uspgredg2vtxeu 29165 4cycl2vnunb 30234 frgr2wwlk1 30273 minvecolem7 30827 hlimreui 31183 riesz4i 32007 cdjreui 32376 xreceu 32862 cvmseu 35253 segconeu 35989 outsideofeu 36109 poimirlem4 37608 bfp 37808 exidu1 37840 rngoideu 37887 lshpsmreu 39092 cdleme 40543 lcfl7N 41484 mapdpg 41689 hdmap14lem6 41856 rediveud 42420 mpaaeu 43127 icceuelpart 47424 isuspgrim0lem 47881 |
| Copyright terms: Public domain | W3C validator |