![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3390 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rmo4 3752 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 622 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-clel 2819 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: reuind 3775 oawordeulem 8610 fin23lem23 10395 nqereu 10998 receu 11935 lbreu 12245 cju 12289 fprodser 15997 divalglem9 16449 ndvdssub 16457 qredeu 16705 pj1eu 19738 efgredeu 19794 lspsneu 21148 qtopeu 23745 qtophmeo 23846 minveclem7 25488 ig1peu 26234 coeeu 26284 plydivalg 26359 nocvxmin 27841 hlcgreu 28644 mirreu3 28680 trgcopyeu 28832 axcontlem2 28998 umgr2edg1 29246 umgr2edgneu 29249 usgredgreu 29253 uspgredg2vtxeu 29255 4cycl2vnunb 30322 frgr2wwlk1 30361 minvecolem7 30915 hlimreui 31271 riesz4i 32095 cdjreui 32464 xreceu 32886 cvmseu 35244 segconeu 35975 outsideofeu 36095 poimirlem4 37584 bfp 37784 exidu1 37816 rngoideu 37863 lshpsmreu 39065 cdleme 40517 lcfl7N 41458 mapdpg 41663 hdmap14lem6 41830 mpaaeu 43107 icceuelpart 47310 isuspgrim0lem 47755 |
Copyright terms: Public domain | W3C validator |