Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rmo4 3665 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 df-clel 2816 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 |
This theorem is referenced by: reuind 3688 oawordeulem 8385 fin23lem23 10082 nqereu 10685 receu 11620 lbreu 11925 cju 11969 fprodser 15659 divalglem9 16110 ndvdssub 16118 qredeu 16363 pj1eu 19302 efgredeu 19358 lspsneu 20385 qtopeu 22867 qtophmeo 22968 minveclem7 24599 ig1peu 25336 coeeu 25386 plydivalg 25459 hlcgreu 26979 mirreu3 27015 trgcopyeu 27167 axcontlem2 27333 umgr2edg1 27578 umgr2edgneu 27581 usgredgreu 27585 uspgredg2vtxeu 27587 4cycl2vnunb 28654 frgr2wwlk1 28693 minvecolem7 29245 hlimreui 29601 riesz4i 30425 cdjreui 30794 xreceu 31196 cvmseu 33238 nocvxmin 33973 segconeu 34313 outsideofeu 34433 poimirlem4 35781 bfp 35982 exidu1 36014 rngoideu 36061 lshpsmreu 37123 cdleme 38574 lcfl7N 39515 mapdpg 39720 hdmap14lem6 39887 mpaaeu 40975 icceuelpart 44888 |
Copyright terms: Public domain | W3C validator |