| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3713 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3051 ∃wrex 3060 ∃!wreu 3357 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 df-clel 2809 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 |
| This theorem is referenced by: reuind 3736 oawordeulem 8566 fin23lem23 10340 nqereu 10943 receu 11882 lbreu 12192 cju 12236 fprodser 15965 divalglem9 16420 ndvdssub 16428 qredeu 16677 pj1eu 19677 efgredeu 19733 lspsneu 21084 qtopeu 23654 qtophmeo 23755 minveclem7 25387 ig1peu 26132 coeeu 26182 plydivalg 26259 nocvxmin 27742 hlcgreu 28597 mirreu3 28633 trgcopyeu 28785 axcontlem2 28944 umgr2edg1 29190 umgr2edgneu 29193 usgredgreu 29197 uspgredg2vtxeu 29199 4cycl2vnunb 30271 frgr2wwlk1 30310 minvecolem7 30864 hlimreui 31220 riesz4i 32044 cdjreui 32413 xreceu 32896 cvmseu 35298 segconeu 36029 outsideofeu 36149 poimirlem4 37648 bfp 37848 exidu1 37880 rngoideu 37927 lshpsmreu 39127 cdleme 40579 lcfl7N 41520 mapdpg 41725 hdmap14lem6 41892 mpaaeu 43174 icceuelpart 47450 isuspgrim0lem 47906 |
| Copyright terms: Public domain | W3C validator |