Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3351 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rmo4 3660 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 622 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 |
This theorem is referenced by: reuind 3683 oawordeulem 8347 fin23lem23 10013 nqereu 10616 receu 11550 lbreu 11855 cju 11899 fprodser 15587 divalglem9 16038 ndvdssub 16046 qredeu 16291 pj1eu 19217 efgredeu 19273 lspsneu 20300 qtopeu 22775 qtophmeo 22876 minveclem7 24504 ig1peu 25241 coeeu 25291 plydivalg 25364 hlcgreu 26883 mirreu3 26919 trgcopyeu 27071 axcontlem2 27236 umgr2edg1 27481 umgr2edgneu 27484 usgredgreu 27488 uspgredg2vtxeu 27490 4cycl2vnunb 28555 frgr2wwlk1 28594 minvecolem7 29146 hlimreui 29502 riesz4i 30326 cdjreui 30695 xreceu 31098 cvmseu 33138 nocvxmin 33900 segconeu 34240 outsideofeu 34360 poimirlem4 35708 bfp 35909 exidu1 35941 rngoideu 35988 lshpsmreu 37050 cdleme 38501 lcfl7N 39442 mapdpg 39647 hdmap14lem6 39814 mpaaeu 40891 icceuelpart 44776 |
Copyright terms: Public domain | W3C validator |