| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3382 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3736 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3061 ∃wrex 3070 ∃!wreu 3378 ∃*wrmo 3379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-clel 2816 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 |
| This theorem is referenced by: reuind 3759 oawordeulem 8592 fin23lem23 10366 nqereu 10969 receu 11908 lbreu 12218 cju 12262 fprodser 15985 divalglem9 16438 ndvdssub 16446 qredeu 16695 pj1eu 19714 efgredeu 19770 lspsneu 21125 qtopeu 23724 qtophmeo 23825 minveclem7 25469 ig1peu 26214 coeeu 26264 plydivalg 26341 nocvxmin 27823 hlcgreu 28626 mirreu3 28662 trgcopyeu 28814 axcontlem2 28980 umgr2edg1 29228 umgr2edgneu 29231 usgredgreu 29235 uspgredg2vtxeu 29237 4cycl2vnunb 30309 frgr2wwlk1 30348 minvecolem7 30902 hlimreui 31258 riesz4i 32082 cdjreui 32451 xreceu 32904 cvmseu 35281 segconeu 36012 outsideofeu 36132 poimirlem4 37631 bfp 37831 exidu1 37863 rngoideu 37910 lshpsmreu 39110 cdleme 40562 lcfl7N 41503 mapdpg 41708 hdmap14lem6 41875 mpaaeu 43162 icceuelpart 47423 isuspgrim0lem 47871 |
| Copyright terms: Public domain | W3C validator |