MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu4 Structured version   Visualization version   GIF version

Theorem reu4 3727
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu4 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu4
StepHypRef Expression
1 reu5 3378 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
2 rmo4.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32rmo4 3726 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
43anbi2i 623 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
51, 4bitri 274 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wral 3061  wrex 3070  ∃!wreu 3374  ∃*wrmo 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-mo 2534  df-eu 2563  df-clel 2810  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377
This theorem is referenced by:  reuind  3749  oawordeulem  8556  fin23lem23  10323  nqereu  10926  receu  11861  lbreu  12166  cju  12210  fprodser  15895  divalglem9  16346  ndvdssub  16354  qredeu  16597  pj1eu  19566  efgredeu  19622  lspsneu  20742  qtopeu  23227  qtophmeo  23328  minveclem7  24959  ig1peu  25696  coeeu  25746  plydivalg  25819  nocvxmin  27287  hlcgreu  27907  mirreu3  27943  trgcopyeu  28095  axcontlem2  28261  umgr2edg1  28506  umgr2edgneu  28509  usgredgreu  28513  uspgredg2vtxeu  28515  4cycl2vnunb  29581  frgr2wwlk1  29620  minvecolem7  30174  hlimreui  30530  riesz4i  31354  cdjreui  31723  xreceu  32126  cvmseu  34336  segconeu  35058  outsideofeu  35178  poimirlem4  36584  bfp  36784  exidu1  36816  rngoideu  36863  lshpsmreu  38071  cdleme  39523  lcfl7N  40464  mapdpg  40669  hdmap14lem6  40836  mpaaeu  41980  icceuelpart  46189
  Copyright terms: Public domain W3C validator