| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3353 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3698 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∃wrex 3053 ∃!wreu 3349 ∃*wrmo 3350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 |
| This theorem is referenced by: reuind 3721 oawordeulem 8495 fin23lem23 10255 nqereu 10858 receu 11799 lbreu 12109 cju 12158 fprodser 15891 divalglem9 16347 ndvdssub 16355 qredeu 16604 pj1eu 19610 efgredeu 19666 lspsneu 21065 qtopeu 23636 qtophmeo 23737 minveclem7 25368 ig1peu 26113 coeeu 26163 plydivalg 26240 nocvxmin 27724 hlcgreu 28598 mirreu3 28634 trgcopyeu 28786 axcontlem2 28945 umgr2edg1 29191 umgr2edgneu 29194 usgredgreu 29198 uspgredg2vtxeu 29200 4cycl2vnunb 30269 frgr2wwlk1 30308 minvecolem7 30862 hlimreui 31218 riesz4i 32042 cdjreui 32411 xreceu 32892 cvmseu 35256 segconeu 35992 outsideofeu 36112 poimirlem4 37611 bfp 37811 exidu1 37843 rngoideu 37890 lshpsmreu 39095 cdleme 40547 lcfl7N 41488 mapdpg 41693 hdmap14lem6 41860 rediveud 42424 mpaaeu 43132 icceuelpart 47430 isuspgrim0lem 47886 |
| Copyright terms: Public domain | W3C validator |