| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3356 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3701 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∃wrex 3053 ∃!wreu 3352 ∃*wrmo 3353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 |
| This theorem is referenced by: reuind 3724 oawordeulem 8518 fin23lem23 10279 nqereu 10882 receu 11823 lbreu 12133 cju 12182 fprodser 15915 divalglem9 16371 ndvdssub 16379 qredeu 16628 pj1eu 19626 efgredeu 19682 lspsneu 21033 qtopeu 23603 qtophmeo 23704 minveclem7 25335 ig1peu 26080 coeeu 26130 plydivalg 26207 nocvxmin 27690 hlcgreu 28545 mirreu3 28581 trgcopyeu 28733 axcontlem2 28892 umgr2edg1 29138 umgr2edgneu 29141 usgredgreu 29145 uspgredg2vtxeu 29147 4cycl2vnunb 30219 frgr2wwlk1 30258 minvecolem7 30812 hlimreui 31168 riesz4i 31992 cdjreui 32361 xreceu 32842 cvmseu 35263 segconeu 35999 outsideofeu 36119 poimirlem4 37618 bfp 37818 exidu1 37850 rngoideu 37897 lshpsmreu 39102 cdleme 40554 lcfl7N 41495 mapdpg 41700 hdmap14lem6 41867 rediveud 42431 mpaaeu 43139 icceuelpart 47437 isuspgrim0lem 47893 |
| Copyright terms: Public domain | W3C validator |