| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu4 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu4 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 2 | rmo4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rmo4 3684 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 df-clel 2806 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: reuind 3707 oawordeulem 8469 fin23lem23 10217 nqereu 10820 receu 11762 lbreu 12072 cju 12121 fprodser 15856 divalglem9 16312 ndvdssub 16320 qredeu 16569 pj1eu 19608 efgredeu 19664 lspsneu 21060 qtopeu 23631 qtophmeo 23732 minveclem7 25362 ig1peu 26107 coeeu 26157 plydivalg 26234 nocvxmin 27718 hlcgreu 28596 mirreu3 28632 trgcopyeu 28784 axcontlem2 28943 umgr2edg1 29189 umgr2edgneu 29192 usgredgreu 29196 uspgredg2vtxeu 29198 4cycl2vnunb 30270 frgr2wwlk1 30309 minvecolem7 30863 hlimreui 31219 riesz4i 32043 cdjreui 32412 xreceu 32902 cvmseu 35320 segconeu 36055 outsideofeu 36175 poimirlem4 37674 bfp 37874 exidu1 37906 rngoideu 37953 lshpsmreu 39218 cdleme 40669 lcfl7N 41610 mapdpg 41815 hdmap14lem6 41982 rediveud 42546 mpaaeu 43253 icceuelpart 47546 isuspgrim0lem 48003 |
| Copyright terms: Public domain | W3C validator |