MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu8 Structured version   Visualization version   GIF version

Theorem reu8 3721
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu8 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvreuvw 3388 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
3 reu6 3714 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥))
4 dfbi2 474 . . . . 5 ((𝜓𝑦 = 𝑥) ↔ ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
54ralbii 3083 . . . 4 (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
6 r19.26 3099 . . . . 5 (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
7 ancom 460 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑))
8 equcom 2018 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
98imbi2i 336 . . . . . . . . 9 ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑦 = 𝑥))
109ralbii 3083 . . . . . . . 8 (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥))
1110a1i 11 . . . . . . 7 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥)))
12 biimt 360 . . . . . . . 8 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
13 df-ral 3053 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 = 𝑥𝜓) ↔ ∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)))
14 bi2.04 387 . . . . . . . . . 10 ((𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ (𝑦 = 𝑥 → (𝑦𝐴𝜓)))
1514albii 1819 . . . . . . . . 9 (∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)))
16 eleq1w 2818 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1716, 1imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817bicomd 223 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
1918equcoms 2020 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
2019equsalvw 2004 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)) ↔ (𝑥𝐴𝜑))
2113, 15, 203bitrri 298 . . . . . . . 8 ((𝑥𝐴𝜑) ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))
2212, 21bitrdi 287 . . . . . . 7 (𝑥𝐴 → (𝜑 ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2311, 22anbi12d 632 . . . . . 6 (𝑥𝐴 → ((∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
247, 23bitrid 283 . . . . 5 (𝑥𝐴 → ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
256, 24bitr4id 290 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
265, 25bitrid 283 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
2726rexbiia 3082 . 2 (∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
282, 3, 273bitri 297 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3052  wrex 3061  ∃!wreu 3362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clel 2810  df-ral 3053  df-rex 3062  df-reu 3365
This theorem is referenced by:  reu8nf  3857  updjud  9953  reusq0  15486  reumodprminv  16829  grpinveu  18962  addsq2reu  27408  2sqreulem1  27414  2sqreunnlem1  27417  grpoideu  30495  grpoinveu  30505  cvmlift3lem2  35347  euoreqb  47105  2reu8i  47109  2reuimp0  47110  paireqne  47492  itsclquadeu  48724
  Copyright terms: Public domain W3C validator