MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu8 Structured version   Visualization version   GIF version

Theorem reu8 3704
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu8 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvreuvw 3378 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
3 reu6 3697 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥))
4 dfbi2 474 . . . . 5 ((𝜓𝑦 = 𝑥) ↔ ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
54ralbii 3075 . . . 4 (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
6 r19.26 3091 . . . . 5 (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
7 ancom 460 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑))
8 equcom 2018 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
98imbi2i 336 . . . . . . . . 9 ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑦 = 𝑥))
109ralbii 3075 . . . . . . . 8 (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥))
1110a1i 11 . . . . . . 7 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥)))
12 biimt 360 . . . . . . . 8 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
13 df-ral 3045 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 = 𝑥𝜓) ↔ ∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)))
14 bi2.04 387 . . . . . . . . . 10 ((𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ (𝑦 = 𝑥 → (𝑦𝐴𝜓)))
1514albii 1819 . . . . . . . . 9 (∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)))
16 eleq1w 2811 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1716, 1imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817bicomd 223 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
1918equcoms 2020 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
2019equsalvw 2004 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)) ↔ (𝑥𝐴𝜑))
2113, 15, 203bitrri 298 . . . . . . . 8 ((𝑥𝐴𝜑) ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))
2212, 21bitrdi 287 . . . . . . 7 (𝑥𝐴 → (𝜑 ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2311, 22anbi12d 632 . . . . . 6 (𝑥𝐴 → ((∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
247, 23bitrid 283 . . . . 5 (𝑥𝐴 → ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
256, 24bitr4id 290 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
265, 25bitrid 283 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
2726rexbiia 3074 . 2 (∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
282, 3, 273bitri 297 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clel 2803  df-ral 3045  df-rex 3054  df-reu 3355
This theorem is referenced by:  reu8nf  3840  updjud  9887  reusq0  15431  reumodprminv  16775  grpinveu  18906  addsq2reu  27351  2sqreulem1  27357  2sqreunnlem1  27360  grpoideu  30438  grpoinveu  30448  cvmlift3lem2  35307  euoreqb  47110  2reu8i  47114  2reuimp0  47115  paireqne  47512  pgnbgreunbgr  48115  itsclquadeu  48766
  Copyright terms: Public domain W3C validator