Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv3 Structured version   Visualization version   GIF version

Theorem reusv3 5271
 Description: Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 5263 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
Hypotheses
Ref Expression
reusv3.1 (𝑦 = 𝑧 → (𝜑𝜓))
reusv3.2 (𝑦 = 𝑧𝐶 = 𝐷)
Assertion
Ref Expression
reusv3 (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐶,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑧   𝜓,𝑥,𝑦   𝑥,𝐴,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)   𝐶(𝑦)   𝐷(𝑧)

Proof of Theorem reusv3
StepHypRef Expression
1 reusv3.1 . . . . 5 (𝑦 = 𝑧 → (𝜑𝜓))
2 reusv3.2 . . . . . 6 (𝑦 = 𝑧𝐶 = 𝐷)
32eleq1d 2874 . . . . 5 (𝑦 = 𝑧 → (𝐶𝐴𝐷𝐴))
41, 3anbi12d 633 . . . 4 (𝑦 = 𝑧 → ((𝜑𝐶𝐴) ↔ (𝜓𝐷𝐴)))
54cbvrexvw 3397 . . 3 (∃𝑦𝐵 (𝜑𝐶𝐴) ↔ ∃𝑧𝐵 (𝜓𝐷𝐴))
6 nfra2w 3191 . . . . 5 𝑧𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷)
7 nfv 1915 . . . . 5 𝑧𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)
86, 7nfim 1897 . . . 4 𝑧(∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
9 risset 3226 . . . . . 6 (𝐷𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝐷)
10 ralcom 3307 . . . . . . . . . . . . . 14 (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∀𝑧𝐵𝑦𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
11 impexp 454 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) → 𝐶 = 𝐷) ↔ (𝜑 → (𝜓𝐶 = 𝐷)))
12 bi2.04 392 . . . . . . . . . . . . . . . . . 18 ((𝜑 → (𝜓𝐶 = 𝐷)) ↔ (𝜓 → (𝜑𝐶 = 𝐷)))
1311, 12bitri 278 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) → 𝐶 = 𝐷) ↔ (𝜓 → (𝜑𝐶 = 𝐷)))
1413ralbii 3133 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∀𝑦𝐵 (𝜓 → (𝜑𝐶 = 𝐷)))
15 r19.21v 3142 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 (𝜓 → (𝜑𝐶 = 𝐷)) ↔ (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷)))
1614, 15bitri 278 . . . . . . . . . . . . . . 15 (∀𝑦𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷)))
1716ralbii 3133 . . . . . . . . . . . . . 14 (∀𝑧𝐵𝑦𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∀𝑧𝐵 (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷)))
1810, 17bitri 278 . . . . . . . . . . . . 13 (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∀𝑧𝐵 (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷)))
19 rsp 3170 . . . . . . . . . . . . 13 (∀𝑧𝐵 (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷)) → (𝑧𝐵 → (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷))))
2018, 19sylbi 220 . . . . . . . . . . . 12 (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → (𝑧𝐵 → (𝜓 → ∀𝑦𝐵 (𝜑𝐶 = 𝐷))))
2120com3l 89 . . . . . . . . . . 11 (𝑧𝐵 → (𝜓 → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∀𝑦𝐵 (𝜑𝐶 = 𝐷))))
2221imp31 421 . . . . . . . . . 10 (((𝑧𝐵𝜓) ∧ ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷)) → ∀𝑦𝐵 (𝜑𝐶 = 𝐷))
23 eqeq1 2802 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑥 = 𝐶𝐷 = 𝐶))
24 eqcom 2805 . . . . . . . . . . . . 13 (𝐷 = 𝐶𝐶 = 𝐷)
2523, 24syl6bb 290 . . . . . . . . . . . 12 (𝑥 = 𝐷 → (𝑥 = 𝐶𝐶 = 𝐷))
2625imbi2d 344 . . . . . . . . . . 11 (𝑥 = 𝐷 → ((𝜑𝑥 = 𝐶) ↔ (𝜑𝐶 = 𝐷)))
2726ralbidv 3162 . . . . . . . . . 10 (𝑥 = 𝐷 → (∀𝑦𝐵 (𝜑𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜑𝐶 = 𝐷)))
2822, 27syl5ibrcom 250 . . . . . . . . 9 (((𝑧𝐵𝜓) ∧ ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷)) → (𝑥 = 𝐷 → ∀𝑦𝐵 (𝜑𝑥 = 𝐶)))
2928reximdv 3232 . . . . . . . 8 (((𝑧𝐵𝜓) ∧ ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷)) → (∃𝑥𝐴 𝑥 = 𝐷 → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
3029ex 416 . . . . . . 7 ((𝑧𝐵𝜓) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → (∃𝑥𝐴 𝑥 = 𝐷 → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))))
3130com23 86 . . . . . 6 ((𝑧𝐵𝜓) → (∃𝑥𝐴 𝑥 = 𝐷 → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))))
329, 31syl5bi 245 . . . . 5 ((𝑧𝐵𝜓) → (𝐷𝐴 → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))))
3332expimpd 457 . . . 4 (𝑧𝐵 → ((𝜓𝐷𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))))
348, 33rexlimi 3274 . . 3 (∃𝑧𝐵 (𝜓𝐷𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
355, 34sylbi 220 . 2 (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) → ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
361, 2reusv3i 5270 . 2 (∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶) → ∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷))
3735, 36impbid1 228 1 (∃𝑦𝐵 (𝜑𝐶𝐴) → (∀𝑦𝐵𝑧𝐵 ((𝜑𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-dif 3884  df-nul 4244 This theorem is referenced by:  cdleme25b  37647  cdleme29b  37668  cdlemk28-3  38201  dihlsscpre  38527  mapdh9a  39082  mapdh9aOLDN  39083
 Copyright terms: Public domain W3C validator