Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnmptf | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. Same as elrnmpt 5854, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmptf.1 | ⊢ Ⅎ𝑥𝐶 |
elrnmptf.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
elrnmptf | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | nfeq2 2923 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐶 |
3 | eqeq1 2742 | . . 3 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) | |
4 | 2, 3 | rexbid 3248 | . 2 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | elrnmptf.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | rnmpt 5853 | . 2 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
7 | 4, 6 | elab2g 3604 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∃wrex 3064 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elrnmpt1sf 42616 |
Copyright terms: Public domain | W3C validator |