Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmptf Structured version   Visualization version   GIF version

Theorem elrnmptf 45153
Description: The range of a function in maps-to notation. Same as elrnmpt 5938, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptf.1 𝑥𝐶
elrnmptf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptf (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))

Proof of Theorem elrnmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elrnmptf.1 . . . 4 𝑥𝐶
21nfeq2 2916 . . 3 𝑥 𝑦 = 𝐶
3 eqeq1 2739 . . 3 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
42, 3rexbid 3256 . 2 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
5 elrnmptf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
65rnmpt 5937 . 2 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
74, 6elab2g 3659 1 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2883  wrex 3060  cmpt 5201  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  elrnmpt1sf  45161
  Copyright terms: Public domain W3C validator