MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 9786
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3410 . . 3 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
2 rab0 4335 . . 3 {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅
31, 2eqtrdi 2784 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
4 n0 4302 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 nfre1 3258 . . . . . . . . 9 𝑥𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)
6 eqid 2733 . . . . . . . . . 10 (rank‘𝑥) = (rank‘𝑥)
7 rspe 3223 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
86, 7mpan2 691 . . . . . . . . 9 (𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
95, 8exlimi 2222 . . . . . . . 8 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
104, 9sylbi 217 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
11 fvex 6841 . . . . . . . . . . 11 (rank‘𝑥) ∈ V
12 eqeq1 2737 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ (rank‘𝑥) = (rank‘𝑥)))
1312anbi2d 630 . . . . . . . . . . 11 (𝑦 = (rank‘𝑥) → ((𝑥𝐴𝑦 = (rank‘𝑥)) ↔ (𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥))))
1411, 13spcev 3557 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1514eximi 1836 . . . . . . . . 9 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
16 excom 2167 . . . . . . . . 9 (∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)) ↔ ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1715, 16sylibr 234 . . . . . . . 8 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
18 df-rex 3058 . . . . . . . 8 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)))
19 df-rex 3058 . . . . . . . . 9 (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2019exbii 1849 . . . . . . . 8 (∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2117, 18, 203imtr4i 292 . . . . . . 7 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2210, 21syl 17 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
23 abn0 4334 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2422, 23sylibr 234 . . . . 5 (𝐴 ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅)
2511dfiin2 4983 . . . . . 6 𝑥𝐴 (rank‘𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)}
26 rankon 9695 . . . . . . . . . 10 (rank‘𝑥) ∈ On
27 eleq1 2821 . . . . . . . . . 10 (𝑦 = (rank‘𝑥) → (𝑦 ∈ On ↔ (rank‘𝑥) ∈ On))
2826, 27mpbiri 258 . . . . . . . . 9 (𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
2928rexlimivw 3130 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
3029abssi 4017 . . . . . . 7 {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On
31 onint 7729 . . . . . . 7 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3230, 31mpan 690 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3325, 32eqeltrid 2837 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
34 nfii1 4979 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
3534nfeq2 2913 . . . . . . . 8 𝑥 𝑦 = 𝑥𝐴 (rank‘𝑥)
36 eqeq1 2737 . . . . . . . 8 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3735, 36rexbid 3247 . . . . . . 7 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3837elabg 3628 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3938ibi 267 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
40 ssid 3953 . . . . . . . . . 10 (rank‘𝑦) ⊆ (rank‘𝑦)
41 fveq2 6828 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
4241sseq1d 3962 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑦) ⊆ (rank‘𝑦)))
4342rspcev 3573 . . . . . . . . . 10 ((𝑦𝐴 ∧ (rank‘𝑦) ⊆ (rank‘𝑦)) → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4440, 43mpan2 691 . . . . . . . . 9 (𝑦𝐴 → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
45 iinss 5007 . . . . . . . . 9 (∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4644, 45syl 17 . . . . . . . 8 (𝑦𝐴 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
47 sseq1 3956 . . . . . . . 8 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
4846, 47imbitrid 244 . . . . . . 7 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
4948ralrimiv 3124 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5049reximi 3071 . . . . 5 (∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
52 rabn0 4338 . . . 4 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5351, 52sylibr 234 . . 3 (𝐴 ≠ ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅)
5453necon4i 2964 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ → 𝐴 = ∅)
553, 54impbii 209 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  wss 3898  c0 4282   cint 4897   ciin 4942  Oncon0 6311  cfv 6486  rankcrnk 9663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9664  df-rank 9665
This theorem is referenced by:  scott0s  9788  cplem1  9789  karden  9795  scott0f  38229  scotteld  44363
  Copyright terms: Public domain W3C validator