MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 9881
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = βˆ… ↔ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…)
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3447 . . 3 (𝐴 = βˆ… β†’ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = {π‘₯ ∈ βˆ… ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)})
2 rab0 4383 . . 3 {π‘₯ ∈ βˆ… ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…
31, 2eqtrdi 2789 . 2 (𝐴 = βˆ… β†’ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…)
4 n0 4347 . . . . . . . 8 (𝐴 β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ 𝐴)
5 nfre1 3283 . . . . . . . . 9 β„²π‘₯βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯)
6 eqid 2733 . . . . . . . . . 10 (rankβ€˜π‘₯) = (rankβ€˜π‘₯)
7 rspe 3247 . . . . . . . . . 10 ((π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)) β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯))
86, 7mpan2 690 . . . . . . . . 9 (π‘₯ ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯))
95, 8exlimi 2211 . . . . . . . 8 (βˆƒπ‘₯ π‘₯ ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯))
104, 9sylbi 216 . . . . . . 7 (𝐴 β‰  βˆ… β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯))
11 fvex 6905 . . . . . . . . . . 11 (rankβ€˜π‘₯) ∈ V
12 eqeq1 2737 . . . . . . . . . . . 12 (𝑦 = (rankβ€˜π‘₯) β†’ (𝑦 = (rankβ€˜π‘₯) ↔ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)))
1312anbi2d 630 . . . . . . . . . . 11 (𝑦 = (rankβ€˜π‘₯) β†’ ((π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)) ↔ (π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯))))
1411, 13spcev 3597 . . . . . . . . . 10 ((π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)) β†’ βˆƒπ‘¦(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
1514eximi 1838 . . . . . . . . 9 (βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)) β†’ βˆƒπ‘₯βˆƒπ‘¦(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
16 excom 2163 . . . . . . . . 9 (βˆƒπ‘¦βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)) ↔ βˆƒπ‘₯βˆƒπ‘¦(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
1715, 16sylibr 233 . . . . . . . 8 (βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)) β†’ βˆƒπ‘¦βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
18 df-rex 3072 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) ↔ βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ (rankβ€˜π‘₯) = (rankβ€˜π‘₯)))
19 df-rex 3072 . . . . . . . . 9 (βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯) ↔ βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
2019exbii 1851 . . . . . . . 8 (βˆƒπ‘¦βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯) ↔ βˆƒπ‘¦βˆƒπ‘₯(π‘₯ ∈ 𝐴 ∧ 𝑦 = (rankβ€˜π‘₯)))
2117, 18, 203imtr4i 292 . . . . . . 7 (βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) β†’ βˆƒπ‘¦βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯))
2210, 21syl 17 . . . . . 6 (𝐴 β‰  βˆ… β†’ βˆƒπ‘¦βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯))
23 abn0 4381 . . . . . 6 ({𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β‰  βˆ… ↔ βˆƒπ‘¦βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯))
2422, 23sylibr 233 . . . . 5 (𝐴 β‰  βˆ… β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β‰  βˆ…)
2511dfiin2 5038 . . . . . 6 ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)}
26 rankon 9790 . . . . . . . . . 10 (rankβ€˜π‘₯) ∈ On
27 eleq1 2822 . . . . . . . . . 10 (𝑦 = (rankβ€˜π‘₯) β†’ (𝑦 ∈ On ↔ (rankβ€˜π‘₯) ∈ On))
2826, 27mpbiri 258 . . . . . . . . 9 (𝑦 = (rankβ€˜π‘₯) β†’ 𝑦 ∈ On)
2928rexlimivw 3152 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯) β†’ 𝑦 ∈ On)
3029abssi 4068 . . . . . . 7 {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} βŠ† On
31 onint 7778 . . . . . . 7 (({𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} βŠ† On ∧ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β‰  βˆ…) β†’ ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)})
3230, 31mpan 689 . . . . . 6 ({𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β‰  βˆ… β†’ ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)})
3325, 32eqeltrid 2838 . . . . 5 ({𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β‰  βˆ… β†’ ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)})
34 nfii1 5033 . . . . . . . . 9 β„²π‘₯∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯)
3534nfeq2 2921 . . . . . . . 8 β„²π‘₯ 𝑦 = ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯)
36 eqeq1 2737 . . . . . . . 8 (𝑦 = ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) β†’ (𝑦 = (rankβ€˜π‘₯) ↔ ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯)))
3735, 36rexbid 3272 . . . . . . 7 (𝑦 = ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) β†’ (βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯) ↔ βˆƒπ‘₯ ∈ 𝐴 ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯)))
3837elabg 3667 . . . . . 6 (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β†’ (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} ↔ βˆƒπ‘₯ ∈ 𝐴 ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯)))
3938ibi 267 . . . . 5 (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (rankβ€˜π‘₯)} β†’ βˆƒπ‘₯ ∈ 𝐴 ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯))
40 ssid 4005 . . . . . . . . . 10 (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘¦)
41 fveq2 6892 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ (rankβ€˜π‘₯) = (rankβ€˜π‘¦))
4241sseq1d 4014 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ ((rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘¦)))
4342rspcev 3613 . . . . . . . . . 10 ((𝑦 ∈ 𝐴 ∧ (rankβ€˜π‘¦) βŠ† (rankβ€˜π‘¦)) β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
4440, 43mpan2 690 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
45 iinss 5060 . . . . . . . . 9 (βˆƒπ‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) β†’ ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
4644, 45syl 17 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
47 sseq1 4008 . . . . . . . 8 (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) β†’ (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))
4846, 47imbitrid 243 . . . . . . 7 (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) β†’ (𝑦 ∈ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))
4948ralrimiv 3146 . . . . . 6 (∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) β†’ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
5049reximi 3085 . . . . 5 (βˆƒπ‘₯ ∈ 𝐴 ∩ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) = (rankβ€˜π‘₯) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 β‰  βˆ… β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
52 rabn0 4386 . . . 4 ({π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} β‰  βˆ… ↔ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))
5351, 52sylibr 233 . . 3 (𝐴 β‰  βˆ… β†’ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} β‰  βˆ…)
5453necon4i 2977 . 2 ({π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ… β†’ 𝐴 = βˆ…)
553, 54impbii 208 1 (𝐴 = βˆ… ↔ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949  βˆ…c0 4323  βˆ© cint 4951  βˆ© ciin 4999  Oncon0 6365  β€˜cfv 6544  rankcrnk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-r1 9759  df-rank 9760
This theorem is referenced by:  scott0s  9883  cplem1  9884  karden  9890  scott0f  37037  scotteld  43005
  Copyright terms: Public domain W3C validator