MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 9900
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3430 . . 3 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
2 rab0 4361 . . 3 {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅
31, 2eqtrdi 2786 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
4 n0 4328 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 nfre1 3267 . . . . . . . . 9 𝑥𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)
6 eqid 2735 . . . . . . . . . 10 (rank‘𝑥) = (rank‘𝑥)
7 rspe 3232 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
86, 7mpan2 691 . . . . . . . . 9 (𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
95, 8exlimi 2217 . . . . . . . 8 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
104, 9sylbi 217 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
11 fvex 6889 . . . . . . . . . . 11 (rank‘𝑥) ∈ V
12 eqeq1 2739 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ (rank‘𝑥) = (rank‘𝑥)))
1312anbi2d 630 . . . . . . . . . . 11 (𝑦 = (rank‘𝑥) → ((𝑥𝐴𝑦 = (rank‘𝑥)) ↔ (𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥))))
1411, 13spcev 3585 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1514eximi 1835 . . . . . . . . 9 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
16 excom 2162 . . . . . . . . 9 (∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)) ↔ ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1715, 16sylibr 234 . . . . . . . 8 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
18 df-rex 3061 . . . . . . . 8 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)))
19 df-rex 3061 . . . . . . . . 9 (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2019exbii 1848 . . . . . . . 8 (∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2117, 18, 203imtr4i 292 . . . . . . 7 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2210, 21syl 17 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
23 abn0 4360 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2422, 23sylibr 234 . . . . 5 (𝐴 ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅)
2511dfiin2 5010 . . . . . 6 𝑥𝐴 (rank‘𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)}
26 rankon 9809 . . . . . . . . . 10 (rank‘𝑥) ∈ On
27 eleq1 2822 . . . . . . . . . 10 (𝑦 = (rank‘𝑥) → (𝑦 ∈ On ↔ (rank‘𝑥) ∈ On))
2826, 27mpbiri 258 . . . . . . . . 9 (𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
2928rexlimivw 3137 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
3029abssi 4045 . . . . . . 7 {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On
31 onint 7784 . . . . . . 7 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3230, 31mpan 690 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3325, 32eqeltrid 2838 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
34 nfii1 5005 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
3534nfeq2 2916 . . . . . . . 8 𝑥 𝑦 = 𝑥𝐴 (rank‘𝑥)
36 eqeq1 2739 . . . . . . . 8 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3735, 36rexbid 3256 . . . . . . 7 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3837elabg 3655 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3938ibi 267 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
40 ssid 3981 . . . . . . . . . 10 (rank‘𝑦) ⊆ (rank‘𝑦)
41 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
4241sseq1d 3990 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑦) ⊆ (rank‘𝑦)))
4342rspcev 3601 . . . . . . . . . 10 ((𝑦𝐴 ∧ (rank‘𝑦) ⊆ (rank‘𝑦)) → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4440, 43mpan2 691 . . . . . . . . 9 (𝑦𝐴 → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
45 iinss 5032 . . . . . . . . 9 (∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4644, 45syl 17 . . . . . . . 8 (𝑦𝐴 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
47 sseq1 3984 . . . . . . . 8 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
4846, 47imbitrid 244 . . . . . . 7 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
4948ralrimiv 3131 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5049reximi 3074 . . . . 5 (∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
52 rabn0 4364 . . . 4 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5351, 52sylibr 234 . . 3 (𝐴 ≠ ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅)
5453necon4i 2967 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ → 𝐴 = ∅)
553, 54impbii 209 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  {crab 3415  wss 3926  c0 4308   cint 4922   ciin 4968  Oncon0 6352  cfv 6531  rankcrnk 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-rank 9779
This theorem is referenced by:  scott0s  9902  cplem1  9903  karden  9909  scott0f  38193  scotteld  44270
  Copyright terms: Public domain W3C validator