MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmdifi Structured version   Visualization version   GIF version

Theorem releldmdifi 7978
Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.)
Assertion
Ref Expression
releldmdifi ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem releldmdifi
StepHypRef Expression
1 eldif 3921 . . 3 (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵))
2 releldm2 7976 . . . . 5 (Rel 𝐴 → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
32adantr 482 . . . 4 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
43anbi1d 631 . . 3 ((Rel 𝐴𝐵𝐴) → ((𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
51, 4bitrid 283 . 2 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
6 simprl 770 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥𝐴 (1st𝑥) = 𝐶)
7 relss 5738 . . . . . . . . . . . 12 (𝐵𝐴 → (Rel 𝐴 → Rel 𝐵))
87impcom 409 . . . . . . . . . . 11 ((Rel 𝐴𝐵𝐴) → Rel 𝐵)
9 1stdm 7973 . . . . . . . . . . 11 ((Rel 𝐵𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
108, 9sylan 581 . . . . . . . . . 10 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
11 eleq1 2826 . . . . . . . . . 10 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ dom 𝐵𝐶 ∈ dom 𝐵))
1210, 11syl5ibcom 244 . . . . . . . . 9 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1312rexlimdva 3153 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → (∃𝑥𝐵 (1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1413con3d 152 . . . . . . 7 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶))
15 ralnex 3076 . . . . . . 7 (∀𝑥𝐵 ¬ (1st𝑥) = 𝐶 ↔ ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶)
1614, 15syl6ibr 252 . . . . . 6 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1716adantld 492 . . . . 5 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1817imp 408 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶)
19 rexdifi 4106 . . . 4 ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
206, 18, 19syl2anc 585 . . 3 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
2120ex 414 . 2 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
225, 21sylbid 239 1 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  wrex 3074  cdif 3908  wss 3911  dom cdm 5634  Rel wrel 5639  cfv 6497  1st c1st 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fv 6505  df-1st 7922  df-2nd 7923
This theorem is referenced by:  funeldmdif  7981  satffunlem2lem2  34003
  Copyright terms: Public domain W3C validator