MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmdifi Structured version   Visualization version   GIF version

Theorem releldmdifi 8068
Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.)
Assertion
Ref Expression
releldmdifi ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem releldmdifi
StepHypRef Expression
1 eldif 3972 . . 3 (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵))
2 releldm2 8066 . . . . 5 (Rel 𝐴 → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
32adantr 480 . . . 4 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
43anbi1d 631 . . 3 ((Rel 𝐴𝐵𝐴) → ((𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
51, 4bitrid 283 . 2 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
6 simprl 771 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥𝐴 (1st𝑥) = 𝐶)
7 relss 5793 . . . . . . . . . . . 12 (𝐵𝐴 → (Rel 𝐴 → Rel 𝐵))
87impcom 407 . . . . . . . . . . 11 ((Rel 𝐴𝐵𝐴) → Rel 𝐵)
9 1stdm 8063 . . . . . . . . . . 11 ((Rel 𝐵𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
108, 9sylan 580 . . . . . . . . . 10 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
11 eleq1 2826 . . . . . . . . . 10 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ dom 𝐵𝐶 ∈ dom 𝐵))
1210, 11syl5ibcom 245 . . . . . . . . 9 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1312rexlimdva 3152 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → (∃𝑥𝐵 (1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1413con3d 152 . . . . . . 7 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶))
15 ralnex 3069 . . . . . . 7 (∀𝑥𝐵 ¬ (1st𝑥) = 𝐶 ↔ ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶)
1614, 15imbitrrdi 252 . . . . . 6 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1716adantld 490 . . . . 5 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1817imp 406 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶)
19 rexdifi 4159 . . . 4 ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
206, 18, 19syl2anc 584 . . 3 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
2120ex 412 . 2 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
225, 21sylbid 240 1 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  cdif 3959  wss 3962  dom cdm 5688  Rel wrel 5693  cfv 6562  1st c1st 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-iota 6515  df-fun 6564  df-fv 6570  df-1st 8012  df-2nd 8013
This theorem is referenced by:  funeldmdif  8071  satffunlem2lem2  35390
  Copyright terms: Public domain W3C validator