MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmdifi Structured version   Visualization version   GIF version

Theorem releldmdifi 7816
Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.)
Assertion
Ref Expression
releldmdifi ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem releldmdifi
StepHypRef Expression
1 eldif 3876 . . 3 (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵))
2 releldm2 7814 . . . . 5 (Rel 𝐴 → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
32adantr 484 . . . 4 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
43anbi1d 633 . . 3 ((Rel 𝐴𝐵𝐴) → ((𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
51, 4syl5bb 286 . 2 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
6 simprl 771 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥𝐴 (1st𝑥) = 𝐶)
7 relss 5653 . . . . . . . . . . . 12 (𝐵𝐴 → (Rel 𝐴 → Rel 𝐵))
87impcom 411 . . . . . . . . . . 11 ((Rel 𝐴𝐵𝐴) → Rel 𝐵)
9 1stdm 7811 . . . . . . . . . . 11 ((Rel 𝐵𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
108, 9sylan 583 . . . . . . . . . 10 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
11 eleq1 2825 . . . . . . . . . 10 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ dom 𝐵𝐶 ∈ dom 𝐵))
1210, 11syl5ibcom 248 . . . . . . . . 9 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1312rexlimdva 3203 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → (∃𝑥𝐵 (1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1413con3d 155 . . . . . . 7 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶))
15 ralnex 3158 . . . . . . 7 (∀𝑥𝐵 ¬ (1st𝑥) = 𝐶 ↔ ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶)
1614, 15syl6ibr 255 . . . . . 6 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1716adantld 494 . . . . 5 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1817imp 410 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶)
19 rexdifi 4060 . . . 4 ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
206, 18, 19syl2anc 587 . . 3 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
2120ex 416 . 2 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
225, 21sylbid 243 1 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cdif 3863  wss 3866  dom cdm 5551  Rel wrel 5556  cfv 6380  1st c1st 7759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fv 6388  df-1st 7761  df-2nd 7762
This theorem is referenced by:  funeldmdif  7819  satffunlem2lem2  33081
  Copyright terms: Public domain W3C validator