MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmdifi Structured version   Visualization version   GIF version

Theorem releldmdifi 8049
Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.)
Assertion
Ref Expression
releldmdifi ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem releldmdifi
StepHypRef Expression
1 eldif 3941 . . 3 (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵))
2 releldm2 8047 . . . . 5 (Rel 𝐴 → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
32adantr 480 . . . 4 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐶))
43anbi1d 631 . . 3 ((Rel 𝐴𝐵𝐴) → ((𝐶 ∈ dom 𝐴 ∧ ¬ 𝐶 ∈ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
51, 4bitrid 283 . 2 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)))
6 simprl 770 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥𝐴 (1st𝑥) = 𝐶)
7 relss 5765 . . . . . . . . . . . 12 (𝐵𝐴 → (Rel 𝐴 → Rel 𝐵))
87impcom 407 . . . . . . . . . . 11 ((Rel 𝐴𝐵𝐴) → Rel 𝐵)
9 1stdm 8044 . . . . . . . . . . 11 ((Rel 𝐵𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
108, 9sylan 580 . . . . . . . . . 10 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → (1st𝑥) ∈ dom 𝐵)
11 eleq1 2823 . . . . . . . . . 10 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ dom 𝐵𝐶 ∈ dom 𝐵))
1210, 11syl5ibcom 245 . . . . . . . . 9 (((Rel 𝐴𝐵𝐴) ∧ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1312rexlimdva 3142 . . . . . . . 8 ((Rel 𝐴𝐵𝐴) → (∃𝑥𝐵 (1st𝑥) = 𝐶𝐶 ∈ dom 𝐵))
1413con3d 152 . . . . . . 7 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶))
15 ralnex 3063 . . . . . . 7 (∀𝑥𝐵 ¬ (1st𝑥) = 𝐶 ↔ ¬ ∃𝑥𝐵 (1st𝑥) = 𝐶)
1614, 15imbitrrdi 252 . . . . . 6 ((Rel 𝐴𝐵𝐴) → (¬ 𝐶 ∈ dom 𝐵 → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1716adantld 490 . . . . 5 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶))
1817imp 406 . . . 4 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶)
19 rexdifi 4130 . . . 4 ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ∀𝑥𝐵 ¬ (1st𝑥) = 𝐶) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
206, 18, 19syl2anc 584 . . 3 (((Rel 𝐴𝐵𝐴) ∧ (∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵)) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶)
2120ex 412 . 2 ((Rel 𝐴𝐵𝐴) → ((∃𝑥𝐴 (1st𝑥) = 𝐶 ∧ ¬ 𝐶 ∈ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
225, 21sylbid 240 1 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cdif 3928  wss 3931  dom cdm 5659  Rel wrel 5664  cfv 6536  1st c1st 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by:  funeldmdif  8052  satffunlem2lem2  35433
  Copyright terms: Public domain W3C validator