Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmunb2 | Structured version Visualization version GIF version |
Description: The primes are unbounded. This generalizes prmunb 16543 to real 𝐴 with arch 12160 and lttrd 11066: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
prmunb2 | ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 771 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 ∈ ℝ) | |
2 | nnre 11910 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
3 | 2 | ad3antlr 727 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 ∈ ℝ) |
4 | prmz 16308 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | zred 12355 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
6 | 5 | ad2antlr 723 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑝 ∈ ℝ) |
7 | simprl 767 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑛) | |
8 | simprr 769 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 < 𝑝) | |
9 | 1, 3, 6, 7, 8 | lttrd 11066 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑝) |
10 | arch 12160 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | |
11 | prmunb 16543 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑛 < 𝑝) | |
12 | 11 | rgen 3073 | . . . . 5 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝 |
13 | r19.29r 3184 | . . . . 5 ⊢ ((∃𝑛 ∈ ℕ 𝐴 < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝) → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
14 | 10, 12, 13 | sylancl 585 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
15 | r19.42v 3276 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
16 | 15 | rexbii 3177 | . . . 4 ⊢ (∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
17 | 14, 16 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) |
18 | 9, 17 | reximddv2 3206 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
19 | 1nn 11914 | . . 3 ⊢ 1 ∈ ℕ | |
20 | ne0i 4265 | . . 3 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
21 | r19.9rzv 4427 | . . 3 ⊢ (ℕ ≠ ∅ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)) | |
22 | 19, 20, 21 | mp2b 10 | . 2 ⊢ (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
23 | 18, 22 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 class class class wbr 5070 ℝcr 10801 1c1 10803 < clt 10940 ℕcn 11903 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-fac 13916 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |