Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmunb2 Structured version   Visualization version   GIF version

Theorem prmunb2 40650
Description: The primes are unbounded. This generalizes prmunb 16252 to real 𝐴 with arch 11897 and lttrd 10803: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
prmunb2 (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
Distinct variable group:   𝐴,𝑝

Proof of Theorem prmunb2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simplll 773 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 ∈ ℝ)
2 nnre 11647 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
32ad3antlr 729 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑛 ∈ ℝ)
4 prmz 16021 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
54zred 12090 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 725 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑝 ∈ ℝ)
7 simprl 769 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 < 𝑛)
8 simprr 771 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝑛 < 𝑝)
91, 3, 6, 7, 8lttrd 10803 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛𝑛 < 𝑝)) → 𝐴 < 𝑝)
10 arch 11897 . . . . 5 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
11 prmunb 16252 . . . . . 6 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑛 < 𝑝)
1211rgen 3150 . . . . 5 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝
13 r19.29r 3257 . . . . 5 ((∃𝑛 ∈ ℕ 𝐴 < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝) → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1410, 12, 13sylancl 588 . . . 4 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
15 r19.42v 3352 . . . . 5 (∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝) ↔ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1615rexbii 3249 . . . 4 (∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝) ↔ ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝))
1714, 16sylibr 236 . . 3 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛𝑛 < 𝑝))
189, 17reximddv2 3280 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
19 1nn 11651 . . 3 1 ∈ ℕ
20 ne0i 4302 . . 3 (1 ∈ ℕ → ℕ ≠ ∅)
21 r19.9rzv 4447 . . 3 (ℕ ≠ ∅ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝))
2219, 20, 21mp2b 10 . 2 (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
2318, 22sylibr 236 1 (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wne 3018  wral 3140  wrex 3141  c0 4293   class class class wbr 5068  cr 10538  1c1 10540   < clt 10677  cn 11640  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-fac 13637  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-prm 16018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator