![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmunb2 | Structured version Visualization version GIF version |
Description: The primes are unbounded. This generalizes prmunb 16948 to real 𝐴 with arch 12521 and lttrd 11420: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
prmunb2 | ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 775 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 ∈ ℝ) | |
2 | nnre 12271 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
3 | 2 | ad3antlr 731 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 ∈ ℝ) |
4 | prmz 16709 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
5 | 4 | zred 12720 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
6 | 5 | ad2antlr 727 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑝 ∈ ℝ) |
7 | simprl 771 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑛) | |
8 | simprr 773 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 < 𝑝) | |
9 | 1, 3, 6, 7, 8 | lttrd 11420 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑝) |
10 | arch 12521 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | |
11 | prmunb 16948 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑛 < 𝑝) | |
12 | 11 | rgen 3061 | . . . . 5 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝 |
13 | r19.29r 3114 | . . . . 5 ⊢ ((∃𝑛 ∈ ℕ 𝐴 < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝) → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
14 | 10, 12, 13 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
15 | r19.42v 3189 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
16 | 15 | rexbii 3092 | . . . 4 ⊢ (∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
17 | 14, 16 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) |
18 | 9, 17 | reximddv2 3213 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
19 | 1nn 12275 | . . 3 ⊢ 1 ∈ ℕ | |
20 | ne0i 4347 | . . 3 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
21 | r19.9rzv 4506 | . . 3 ⊢ (ℕ ≠ ∅ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)) | |
22 | 19, 20, 21 | mp2b 10 | . 2 ⊢ (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
23 | 18, 22 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∅c0 4339 class class class wbr 5148 ℝcr 11152 1c1 11154 < clt 11293 ℕcn 12264 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-fac 14310 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |