| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmunb2 | Structured version Visualization version GIF version | ||
| Description: The primes are unbounded. This generalizes prmunb 16934 to real 𝐴 with arch 12498 and lttrd 11396: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| prmunb2 | ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 774 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 ∈ ℝ) | |
| 2 | nnre 12247 | . . . . 5 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 3 | 2 | ad3antlr 731 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 ∈ ℝ) |
| 4 | prmz 16694 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 5 | 4 | zred 12697 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
| 6 | 5 | ad2antlr 727 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑝 ∈ ℝ) |
| 7 | simprl 770 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑛) | |
| 8 | simprr 772 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝑛 < 𝑝) | |
| 9 | 1, 3, 6, 7, 8 | lttrd 11396 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) ∧ 𝑝 ∈ ℙ) ∧ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) → 𝐴 < 𝑝) |
| 10 | arch 12498 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | |
| 11 | prmunb 16934 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑛 < 𝑝) | |
| 12 | 11 | rgen 3053 | . . . . 5 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝 |
| 13 | r19.29r 3103 | . . . . 5 ⊢ ((∃𝑛 ∈ ℕ 𝐴 < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝑛 < 𝑝) → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
| 14 | 10, 12, 13 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
| 15 | r19.42v 3176 | . . . . 5 ⊢ (∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) | |
| 16 | 15 | rexbii 3083 | . . . 4 ⊢ (∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝) ↔ ∃𝑛 ∈ ℕ (𝐴 < 𝑛 ∧ ∃𝑝 ∈ ℙ 𝑛 < 𝑝)) |
| 17 | 14, 16 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ (𝐴 < 𝑛 ∧ 𝑛 < 𝑝)) |
| 18 | 9, 17 | reximddv2 3200 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
| 19 | 1nn 12251 | . . 3 ⊢ 1 ∈ ℕ | |
| 20 | ne0i 4316 | . . 3 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
| 21 | r19.9rzv 4475 | . . 3 ⊢ (ℕ ≠ ∅ → (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝)) | |
| 22 | 19, 20, 21 | mp2b 10 | . 2 ⊢ (∃𝑝 ∈ ℙ 𝐴 < 𝑝 ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
| 23 | 18, 22 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∅c0 4308 class class class wbr 5119 ℝcr 11128 1c1 11130 < clt 11269 ℕcn 12240 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-fac 14292 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |