MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem8 Structured version   Visualization version   GIF version

Theorem prmgaplem8 17036
Description: Lemma for prmgap 17037. (Contributed by AV, 13-Aug-2020.)
Hypotheses
Ref Expression
prmgaplem7.n (𝜑𝑁 ∈ ℕ)
prmgaplem7.f (𝜑𝐹 ∈ (ℕ ↑m ℕ))
prmgaplem7.i (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
Assertion
Ref Expression
prmgaplem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Distinct variable groups:   𝐹,𝑝,𝑞,𝑧   𝑖,𝐹   𝑁,𝑝,𝑞,𝑧   𝑖,𝑁   𝜑,𝑝,𝑞,𝑧
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem prmgaplem8
StepHypRef Expression
1 prmnn 16651 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
21nnred 12208 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
32ad2antll 729 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑞 ∈ ℝ)
4 prmnn 16651 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
54nnred 12208 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 727 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ∈ ℝ)
76adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ∈ ℝ)
8 prmgaplem7.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
98nnred 12208 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
1110adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ∈ ℝ)
12 prmgaplem7.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (ℕ ↑m ℕ))
13 elmapi 8825 . . . . . . . . . . . . 13 (𝐹 ∈ (ℕ ↑m ℕ) → 𝐹:ℕ⟶ℕ)
14 ffvelcdm 7056 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℕ)
1514ex 412 . . . . . . . . . . . . 13 (𝐹:ℕ⟶ℕ → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
1612, 13, 153syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
178, 16mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐹𝑁) ∈ ℕ)
1817nnred 12208 . . . . . . . . . 10 (𝜑 → (𝐹𝑁) ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹𝑁) ∈ ℝ)
2019adantl 481 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹𝑁) ∈ ℝ)
21 1red 11182 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 1 ∈ ℝ)
2220, 21readdcld 11210 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝐹𝑁) + 1) ∈ ℝ)
2317nncnd 12209 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑁) ∈ ℂ)
24 1cnd 11176 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
258nncnd 12209 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
2623, 24, 25add32d 11409 . . . . . . . . . . . . 13 (𝜑 → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2726adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2827ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2917nnzd 12563 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑁) ∈ ℤ)
3029adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
318nnzd 12563 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
3231adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
3330, 32zaddcld 12649 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 𝑁) ∈ ℤ)
34 prmz 16652 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
35 zltp1le 12590 . . . . . . . . . . . . 13 ((((𝐹𝑁) + 𝑁) ∈ ℤ ∧ 𝑞 ∈ ℤ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3633, 34, 35syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3736biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞)
3828, 37eqbrtrd 5132 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
3938expcom 413 . . . . . . . . 9 (((𝐹𝑁) + 𝑁) < 𝑞 → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4039adantl 481 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4140imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
42 df-2 12256 . . . . . . . . . . . . . . . . 17 2 = (1 + 1)
4342a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 = (1 + 1))
4443oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑁) + 2) = ((𝐹𝑁) + (1 + 1)))
4523, 24, 24addassd 11203 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝑁) + 1) + 1) = ((𝐹𝑁) + (1 + 1)))
4644, 45eqtr4d 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4847breq2d 5122 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
49 prmz 16652 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
5029peano2zd 12648 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 1) ∈ ℤ)
51 zleltp1 12591 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐹𝑁) + 1) ∈ ℤ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5249, 50, 51syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5352biimprd 248 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < (((𝐹𝑁) + 1) + 1) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5448, 53sylbid 240 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5554adantr 480 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5655com12 32 . . . . . . . . 9 (𝑝 < ((𝐹𝑁) + 2) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5756adantr 480 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5857imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ≤ ((𝐹𝑁) + 1))
593, 7, 11, 22, 41, 58lesub3d 11803 . . . . . 6 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ≤ (𝑞𝑝))
6059ex 412 . . . . 5 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
61603adant3 1132 . . . 4 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
6261impcom 407 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → 𝑁 ≤ (𝑞𝑝))
63 simpr3 1197 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
6462, 63jca 511 . 2 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
65 prmgaplem7.i . . 3 (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
668, 12, 65prmgaplem7 17035 . 2 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
6764, 66reximddv2 3197 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030  wral 3045  wrex 3054   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  cz 12536  ...cfz 13475  ..^cfzo 13622   gcd cgcd 16471  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649
This theorem is referenced by:  prmgap  17037  prmgaplcm  17038  prmgapprmo  17040
  Copyright terms: Public domain W3C validator