MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem8 Structured version   Visualization version   GIF version

Theorem prmgaplem8 17029
Description: Lemma for prmgap 17030. (Contributed by AV, 13-Aug-2020.)
Hypotheses
Ref Expression
prmgaplem7.n (𝜑𝑁 ∈ ℕ)
prmgaplem7.f (𝜑𝐹 ∈ (ℕ ↑m ℕ))
prmgaplem7.i (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
Assertion
Ref Expression
prmgaplem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Distinct variable groups:   𝐹,𝑝,𝑞,𝑧   𝑖,𝐹   𝑁,𝑝,𝑞,𝑧   𝑖,𝑁   𝜑,𝑝,𝑞,𝑧
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem prmgaplem8
StepHypRef Expression
1 prmnn 16644 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
21nnred 12201 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
32ad2antll 729 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑞 ∈ ℝ)
4 prmnn 16644 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
54nnred 12201 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 727 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ∈ ℝ)
76adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ∈ ℝ)
8 prmgaplem7.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
98nnred 12201 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
1110adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ∈ ℝ)
12 prmgaplem7.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (ℕ ↑m ℕ))
13 elmapi 8822 . . . . . . . . . . . . 13 (𝐹 ∈ (ℕ ↑m ℕ) → 𝐹:ℕ⟶ℕ)
14 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℕ)
1514ex 412 . . . . . . . . . . . . 13 (𝐹:ℕ⟶ℕ → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
1612, 13, 153syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
178, 16mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐹𝑁) ∈ ℕ)
1817nnred 12201 . . . . . . . . . 10 (𝜑 → (𝐹𝑁) ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹𝑁) ∈ ℝ)
2019adantl 481 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹𝑁) ∈ ℝ)
21 1red 11175 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 1 ∈ ℝ)
2220, 21readdcld 11203 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝐹𝑁) + 1) ∈ ℝ)
2317nncnd 12202 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑁) ∈ ℂ)
24 1cnd 11169 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
258nncnd 12202 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
2623, 24, 25add32d 11402 . . . . . . . . . . . . 13 (𝜑 → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2726adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2827ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2917nnzd 12556 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑁) ∈ ℤ)
3029adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
318nnzd 12556 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
3231adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
3330, 32zaddcld 12642 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 𝑁) ∈ ℤ)
34 prmz 16645 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
35 zltp1le 12583 . . . . . . . . . . . . 13 ((((𝐹𝑁) + 𝑁) ∈ ℤ ∧ 𝑞 ∈ ℤ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3633, 34, 35syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3736biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞)
3828, 37eqbrtrd 5129 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
3938expcom 413 . . . . . . . . 9 (((𝐹𝑁) + 𝑁) < 𝑞 → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4039adantl 481 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4140imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
42 df-2 12249 . . . . . . . . . . . . . . . . 17 2 = (1 + 1)
4342a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 = (1 + 1))
4443oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑁) + 2) = ((𝐹𝑁) + (1 + 1)))
4523, 24, 24addassd 11196 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝑁) + 1) + 1) = ((𝐹𝑁) + (1 + 1)))
4644, 45eqtr4d 2767 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4847breq2d 5119 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
49 prmz 16645 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
5029peano2zd 12641 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 1) ∈ ℤ)
51 zleltp1 12584 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐹𝑁) + 1) ∈ ℤ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5249, 50, 51syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5352biimprd 248 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < (((𝐹𝑁) + 1) + 1) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5448, 53sylbid 240 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5554adantr 480 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5655com12 32 . . . . . . . . 9 (𝑝 < ((𝐹𝑁) + 2) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5756adantr 480 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5857imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ≤ ((𝐹𝑁) + 1))
593, 7, 11, 22, 41, 58lesub3d 11796 . . . . . 6 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ≤ (𝑞𝑝))
6059ex 412 . . . . 5 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
61603adant3 1132 . . . 4 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
6261impcom 407 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → 𝑁 ≤ (𝑞𝑝))
63 simpr3 1197 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
6462, 63jca 511 . 2 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
65 prmgaplem7.i . . 3 (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
668, 12, 65prmgaplem7 17028 . 2 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
6764, 66reximddv2 3196 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  wral 3044  wrex 3053   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  cz 12529  ...cfz 13468  ..^cfzo 13615   gcd cgcd 16464  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642
This theorem is referenced by:  prmgap  17030  prmgaplcm  17031  prmgapprmo  17033
  Copyright terms: Public domain W3C validator