MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem8 Structured version   Visualization version   GIF version

Theorem prmgaplem8 17092
Description: Lemma for prmgap 17093. (Contributed by AV, 13-Aug-2020.)
Hypotheses
Ref Expression
prmgaplem7.n (𝜑𝑁 ∈ ℕ)
prmgaplem7.f (𝜑𝐹 ∈ (ℕ ↑m ℕ))
prmgaplem7.i (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
Assertion
Ref Expression
prmgaplem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Distinct variable groups:   𝐹,𝑝,𝑞,𝑧   𝑖,𝐹   𝑁,𝑝,𝑞,𝑧   𝑖,𝑁   𝜑,𝑝,𝑞,𝑧
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem prmgaplem8
StepHypRef Expression
1 prmnn 16708 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
21nnred 12279 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
32ad2antll 729 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑞 ∈ ℝ)
4 prmnn 16708 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
54nnred 12279 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 727 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ∈ ℝ)
76adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ∈ ℝ)
8 prmgaplem7.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
98nnred 12279 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
109ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
1110adantl 481 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ∈ ℝ)
12 prmgaplem7.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (ℕ ↑m ℕ))
13 elmapi 8888 . . . . . . . . . . . . 13 (𝐹 ∈ (ℕ ↑m ℕ) → 𝐹:ℕ⟶ℕ)
14 ffvelcdm 7101 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℕ)
1514ex 412 . . . . . . . . . . . . 13 (𝐹:ℕ⟶ℕ → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
1612, 13, 153syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
178, 16mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐹𝑁) ∈ ℕ)
1817nnred 12279 . . . . . . . . . 10 (𝜑 → (𝐹𝑁) ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹𝑁) ∈ ℝ)
2019adantl 481 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹𝑁) ∈ ℝ)
21 1red 11260 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 1 ∈ ℝ)
2220, 21readdcld 11288 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝐹𝑁) + 1) ∈ ℝ)
2317nncnd 12280 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑁) ∈ ℂ)
24 1cnd 11254 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
258nncnd 12280 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
2623, 24, 25add32d 11487 . . . . . . . . . . . . 13 (𝜑 → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2726adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2827ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2917nnzd 12638 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑁) ∈ ℤ)
3029adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
318nnzd 12638 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
3231adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
3330, 32zaddcld 12724 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 𝑁) ∈ ℤ)
34 prmz 16709 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
35 zltp1le 12665 . . . . . . . . . . . . 13 ((((𝐹𝑁) + 𝑁) ∈ ℤ ∧ 𝑞 ∈ ℤ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3633, 34, 35syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3736biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞)
3828, 37eqbrtrd 5170 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
3938expcom 413 . . . . . . . . 9 (((𝐹𝑁) + 𝑁) < 𝑞 → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4039adantl 481 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4140imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
42 df-2 12327 . . . . . . . . . . . . . . . . 17 2 = (1 + 1)
4342a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 = (1 + 1))
4443oveq2d 7447 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑁) + 2) = ((𝐹𝑁) + (1 + 1)))
4523, 24, 24addassd 11281 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝑁) + 1) + 1) = ((𝐹𝑁) + (1 + 1)))
4644, 45eqtr4d 2778 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4746adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4847breq2d 5160 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
49 prmz 16709 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
5029peano2zd 12723 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 1) ∈ ℤ)
51 zleltp1 12666 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐹𝑁) + 1) ∈ ℤ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5249, 50, 51syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5352biimprd 248 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < (((𝐹𝑁) + 1) + 1) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5448, 53sylbid 240 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5554adantr 480 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5655com12 32 . . . . . . . . 9 (𝑝 < ((𝐹𝑁) + 2) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5756adantr 480 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5857imp 406 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ≤ ((𝐹𝑁) + 1))
593, 7, 11, 22, 41, 58lesub3d 11879 . . . . . 6 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ≤ (𝑞𝑝))
6059ex 412 . . . . 5 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
61603adant3 1131 . . . 4 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
6261impcom 407 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → 𝑁 ≤ (𝑞𝑝))
63 simpr3 1195 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
6462, 63jca 511 . 2 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
65 prmgaplem7.i . . 3 (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
668, 12, 65prmgaplem7 17091 . 2 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
6764, 66reximddv2 3213 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wnel 3044  wral 3059  wrex 3068   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  cz 12611  ...cfz 13544  ..^cfzo 13691   gcd cgcd 16528  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  prmgap  17093  prmgaplcm  17094  prmgapprmo  17096
  Copyright terms: Public domain W3C validator