MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   GIF version

Theorem cgraswap 28071
Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Baseβ€˜πΊ)
cgraid.i 𝐼 = (Itvβ€˜πΊ)
cgraid.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlGβ€˜πΊ)
cgraid.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
cgraid.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
cgraid.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
cgraid.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
cgraid.2 (πœ‘ β†’ 𝐡 β‰  𝐢)
Assertion
Ref Expression
cgraswap (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπΆπ΅π΄β€βŸ©)

Proof of Theorem cgraswap
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
2 eqid 2733 . . . . 5 (distβ€˜πΊ) = (distβ€˜πΊ)
3 eqid 2733 . . . . 5 (cgrGβ€˜πΊ) = (cgrGβ€˜πΊ)
4 cgraid.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad3antrrr 729 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑃)
76ad3antrrr 729 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝐴 ∈ 𝑃)
8 cgraid.b . . . . . 6 (πœ‘ β†’ 𝐡 ∈ 𝑃)
98ad3antrrr 729 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝐡 ∈ 𝑃)
10 cgraid.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1110ad3antrrr 729 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝐢 ∈ 𝑃)
12 simpllr 775 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ π‘₯ ∈ 𝑃)
13 simplr 768 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝑦 ∈ 𝑃)
14 cgraid.i . . . . . . 7 𝐼 = (Itvβ€˜πΊ)
15 simprlr 779 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴))
161, 2, 14, 5, 9, 12, 9, 7, 15tgcgrcomlr 27731 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯(distβ€˜πΊ)𝐡) = (𝐴(distβ€˜πΊ)𝐡))
1716eqcomd 2739 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐴(distβ€˜πΊ)𝐡) = (π‘₯(distβ€˜πΊ)𝐡))
18 simprrr 781 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢))
1918eqcomd 2739 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐡(distβ€˜πΊ)𝐢) = (𝐡(distβ€˜πΊ)𝑦))
20 eqid 2733 . . . . . . . 8 (LineGβ€˜πΊ) = (LineGβ€˜πΊ)
21 cgraid.k . . . . . . . . . . 11 𝐾 = (hlGβ€˜πΊ)
22 simprll 778 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ π‘₯(πΎβ€˜π΅)𝐢)
231, 14, 21, 12, 11, 9, 5, 20, 22hlln 27858 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ π‘₯ ∈ (𝐢(LineGβ€˜πΊ)𝐡))
2423orcd 872 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯ ∈ (𝐢(LineGβ€˜πΊ)𝐡) ∨ 𝐢 = 𝐡))
251, 20, 14, 5, 11, 9, 12, 24colrot1 27810 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐢 ∈ (𝐡(LineGβ€˜πΊ)π‘₯) ∨ 𝐡 = π‘₯))
26 eqid 2733 . . . . . . . . . 10 (≀Gβ€˜πΊ) = (≀Gβ€˜πΊ)
271, 14, 21, 12, 11, 9, 5ishlg 27853 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯(πΎβ€˜π΅)𝐢 ↔ (π‘₯ β‰  𝐡 ∧ 𝐢 β‰  𝐡 ∧ (π‘₯ ∈ (𝐡𝐼𝐢) ∨ 𝐢 ∈ (𝐡𝐼π‘₯)))))
2822, 27mpbid 231 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯ β‰  𝐡 ∧ 𝐢 β‰  𝐡 ∧ (π‘₯ ∈ (𝐡𝐼𝐢) ∨ 𝐢 ∈ (𝐡𝐼π‘₯))))
2928simp3d 1145 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯ ∈ (𝐡𝐼𝐢) ∨ 𝐢 ∈ (𝐡𝐼π‘₯)))
3029orcomd 870 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐢 ∈ (𝐡𝐼π‘₯) ∨ π‘₯ ∈ (𝐡𝐼𝐢)))
31 simprrl 780 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝑦(πΎβ€˜π΅)𝐴)
321, 14, 21, 13, 7, 9, 5ishlg 27853 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝑦(πΎβ€˜π΅)𝐴 ↔ (𝑦 β‰  𝐡 ∧ 𝐴 β‰  𝐡 ∧ (𝑦 ∈ (𝐡𝐼𝐴) ∨ 𝐴 ∈ (𝐡𝐼𝑦)))))
3331, 32mpbid 231 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝑦 β‰  𝐡 ∧ 𝐴 β‰  𝐡 ∧ (𝑦 ∈ (𝐡𝐼𝐴) ∨ 𝐴 ∈ (𝐡𝐼𝑦))))
3433simp3d 1145 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝑦 ∈ (𝐡𝐼𝐴) ∨ 𝐴 ∈ (𝐡𝐼𝑦)))
351, 2, 14, 26, 5, 9, 11, 12, 9, 9, 13, 7, 30, 34, 19, 15tgcgrsub2 27846 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐢(distβ€˜πΊ)π‘₯) = (𝑦(distβ€˜πΊ)𝐴))
361, 2, 3, 5, 9, 11, 12, 9, 13, 7, 19, 35, 16trgcgr 27767 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ βŸ¨β€œπ΅πΆπ‘₯β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ΅π‘¦π΄β€βŸ©)
371, 2, 14, 5, 11, 13axtgcgrrflx 27713 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐢(distβ€˜πΊ)𝑦) = (𝑦(distβ€˜πΊ)𝐢))
38 cgraid.2 . . . . . . . . 9 (πœ‘ β†’ 𝐡 β‰  𝐢)
3938ad3antrrr 729 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ 𝐡 β‰  𝐢)
401, 20, 14, 5, 9, 11, 12, 3, 9, 13, 2, 13, 7, 11, 25, 36, 18, 37, 39tgfscgr 27819 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (π‘₯(distβ€˜πΊ)𝑦) = (𝐴(distβ€˜πΊ)𝐢))
411, 2, 14, 5, 12, 13, 7, 11, 40tgcgrcomlr 27731 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝑦(distβ€˜πΊ)π‘₯) = (𝐢(distβ€˜πΊ)𝐴))
4241eqcomd 2739 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (𝐢(distβ€˜πΊ)𝐴) = (𝑦(distβ€˜πΊ)π‘₯))
431, 2, 3, 5, 7, 9, 11, 12, 9, 13, 17, 19, 42trgcgr 27767 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯π΅π‘¦β€βŸ©)
4443, 22, 313jca 1129 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))) β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯π΅π‘¦β€βŸ© ∧ π‘₯(πΎβ€˜π΅)𝐢 ∧ 𝑦(πΎβ€˜π΅)𝐴))
4538necomd 2997 . . . . 5 (πœ‘ β†’ 𝐢 β‰  𝐡)
46 cgraid.1 . . . . . 6 (πœ‘ β†’ 𝐴 β‰  𝐡)
4746necomd 2997 . . . . 5 (πœ‘ β†’ 𝐡 β‰  𝐴)
481, 14, 21, 8, 8, 6, 4, 10, 2, 45, 47hlcgrex 27867 . . . 4 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 (π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)))
491, 14, 21, 8, 8, 10, 4, 6, 2, 46, 38hlcgrex 27867 . . . 4 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝑃 (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢)))
50 reeanv 3227 . . . 4 (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢))) ↔ (βˆƒπ‘₯ ∈ 𝑃 (π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ βˆƒπ‘¦ ∈ 𝑃 (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢))))
5148, 49, 50sylanbrc 584 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 ((π‘₯(πΎβ€˜π΅)𝐢 ∧ (𝐡(distβ€˜πΊ)π‘₯) = (𝐡(distβ€˜πΊ)𝐴)) ∧ (𝑦(πΎβ€˜π΅)𝐴 ∧ (𝐡(distβ€˜πΊ)𝑦) = (𝐡(distβ€˜πΊ)𝐢))))
5244, 51reximddv2 3213 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯π΅π‘¦β€βŸ© ∧ π‘₯(πΎβ€˜π΅)𝐢 ∧ 𝑦(πΎβ€˜π΅)𝐴))
531, 14, 21, 4, 6, 8, 10, 10, 8, 6iscgra 28060 . 2 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπΆπ΅π΄β€βŸ© ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯π΅π‘¦β€βŸ© ∧ π‘₯(πΎβ€˜π΅)𝐢 ∧ 𝑦(πΎβ€˜π΅)𝐴)))
5452, 53mpbird 257 1 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπΆπ΅π΄β€βŸ©)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  βŸ¨β€œcs3 14793  Basecbs 17144  distcds 17206  TarskiGcstrkg 27678  Itvcitv 27684  LineGclng 27685  cgrGccgrg 27761  β‰€Gcleg 27833  hlGchlg 27851  cgrAccgra 28058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546  df-s2 14799  df-s3 14800  df-trkgc 27699  df-trkgb 27700  df-trkgcb 27701  df-trkg 27704  df-cgrg 27762  df-leg 27834  df-hlg 27852  df-cgra 28059
This theorem is referenced by:  cgraswaplr  28076  oacgr  28083  tgasa1  28109
  Copyright terms: Public domain W3C validator