Step | Hyp | Ref
| Expression |
1 | | cgraid.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | eqid 2738 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
3 | | eqid 2738 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
4 | | cgraid.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG) |
6 | | cgraid.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴 ∈ 𝑃) |
8 | | cgraid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵 ∈ 𝑃) |
10 | | cgraid.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
11 | 10 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶 ∈ 𝑃) |
12 | | simpllr 772 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ 𝑃) |
13 | | simplr 765 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦 ∈ 𝑃) |
14 | | cgraid.i |
. . . . . . 7
⊢ 𝐼 = (Itv‘𝐺) |
15 | | simprlr 776 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) |
16 | 1, 2, 14, 5, 9, 12, 9, 7, 15 | tgcgrcomlr 26745 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝐵) = (𝐴(dist‘𝐺)𝐵)) |
17 | 16 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵)) |
18 | | simprrr 778 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)) |
19 | 18 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦)) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
21 | | cgraid.k |
. . . . . . . . . . 11
⊢ 𝐾 = (hlG‘𝐺) |
22 | | simprll 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾‘𝐵)𝐶) |
23 | 1, 14, 21, 12, 11, 9, 5, 20, 22 | hlln 26872 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ (𝐶(LineG‘𝐺)𝐵)) |
24 | 23 | orcd 869 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵)) |
25 | 1, 20, 14, 5, 11, 9, 12, 24 | colrot1 26824 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑥) ∨ 𝐵 = 𝑥)) |
26 | | eqid 2738 |
. . . . . . . . . 10
⊢
(≤G‘𝐺) =
(≤G‘𝐺) |
27 | 1, 14, 21, 12, 11, 9, 5 | ishlg 26867 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(𝐾‘𝐵)𝐶 ↔ (𝑥 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))))) |
28 | 22, 27 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))) |
29 | 28 | simp3d 1142 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))) |
30 | 29 | orcomd 867 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵𝐼𝑥) ∨ 𝑥 ∈ (𝐵𝐼𝐶))) |
31 | | simprrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾‘𝐵)𝐴) |
32 | 1, 14, 21, 13, 7, 9, 5 | ishlg 26867 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(𝐾‘𝐵)𝐴 ↔ (𝑦 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))))) |
33 | 31, 32 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))) |
34 | 33 | simp3d 1142 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))) |
35 | 1, 2, 14, 26, 5, 9, 11, 12, 9, 9, 13, 7,
30, 34, 19, 15 | tgcgrsub2 26860 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑥) = (𝑦(dist‘𝐺)𝐴)) |
36 | 1, 2, 3, 5, 9, 11,
12, 9, 13, 7, 19, 35, 16 | trgcgr 26781 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 〈“𝐵𝐶𝑥”〉(cgrG‘𝐺)〈“𝐵𝑦𝐴”〉) |
37 | 1, 2, 14, 5, 11, 13 | axtgcgrrflx 26727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝐶)) |
38 | | cgraid.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
39 | 38 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵 ≠ 𝐶) |
40 | 1, 20, 14, 5, 9, 11, 12, 3, 9, 13, 2, 13, 7, 11, 25, 36, 18, 37, 39 | tgfscgr 26833 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝑦) = (𝐴(dist‘𝐺)𝐶)) |
41 | 1, 2, 14, 5, 12, 13, 7, 11, 40 | tgcgrcomlr 26745 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(dist‘𝐺)𝑥) = (𝐶(dist‘𝐺)𝐴)) |
42 | 41 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)) |
43 | 1, 2, 3, 5, 7, 9, 11, 12, 9, 13, 17, 19, 42 | trgcgr 26781 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉) |
44 | 43, 22, 31 | 3jca 1126 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐶 ∧ 𝑦(𝐾‘𝐵)𝐴)) |
45 | 38 | necomd 2998 |
. . . . 5
⊢ (𝜑 → 𝐶 ≠ 𝐵) |
46 | | cgraid.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
47 | 46 | necomd 2998 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
48 | 1, 14, 21, 8, 8, 6,
4, 10, 2, 45, 47 | hlcgrex 26881 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))) |
49 | 1, 14, 21, 8, 8, 10, 4, 6, 2,
46, 38 | hlcgrex 26881 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) |
50 | | reeanv 3292 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
51 | 48, 49, 50 | sylanbrc 582 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
52 | 44, 51 | reximddv2 3206 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐶 ∧ 𝑦(𝐾‘𝐵)𝐴)) |
53 | 1, 14, 21, 4, 6, 8,
10, 10, 8, 6 | iscgra 27074 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐶𝐵𝐴”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐶 ∧ 𝑦(𝐾‘𝐵)𝐴))) |
54 | 52, 53 | mpbird 256 |
1
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐶𝐵𝐴”〉) |