Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   GIF version

Theorem cgraswap 26523
 Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgraid.1 (𝜑𝐴𝐵)
cgraid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
cgraswap (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)

Proof of Theorem cgraswap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2826 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2826 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 726 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 726 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
8 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 726 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
10 cgraid.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 726 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
12 simpllr 772 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
13 simplr 765 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
14 cgraid.i . . . . . . 7 𝐼 = (Itv‘𝐺)
15 simprlr 776 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
161, 2, 14, 5, 9, 12, 9, 7, 15tgcgrcomlr 26183 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝐵) = (𝐴(dist‘𝐺)𝐵))
1716eqcomd 2832 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵))
18 simprrr 778 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
1918eqcomd 2832 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦))
20 eqid 2826 . . . . . . . 8 (LineG‘𝐺) = (LineG‘𝐺)
21 cgraid.k . . . . . . . . . . 11 𝐾 = (hlG‘𝐺)
22 simprll 775 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝐵)𝐶)
231, 14, 21, 12, 11, 9, 5, 20, 22hlln 26310 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ (𝐶(LineG‘𝐺)𝐵))
2423orcd 871 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
251, 20, 14, 5, 11, 9, 12, 24colrot1 26262 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑥) ∨ 𝐵 = 𝑥))
26 eqid 2826 . . . . . . . . . 10 (≤G‘𝐺) = (≤G‘𝐺)
271, 14, 21, 12, 11, 9, 5ishlg 26305 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(𝐾𝐵)𝐶 ↔ (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))))
2822, 27mpbid 233 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))))
2928simp3d 1138 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))
3029orcomd 867 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵𝐼𝑥) ∨ 𝑥 ∈ (𝐵𝐼𝐶)))
31 simprrl 777 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝐵)𝐴)
321, 14, 21, 13, 7, 9, 5ishlg 26305 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(𝐾𝐵)𝐴 ↔ (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))))
3331, 32mpbid 233 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))))
3433simp3d 1138 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))
351, 2, 14, 26, 5, 9, 11, 12, 9, 9, 13, 7, 30, 34, 19, 15tgcgrsub2 26298 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑥) = (𝑦(dist‘𝐺)𝐴))
361, 2, 3, 5, 9, 11, 12, 9, 13, 7, 19, 35, 16trgcgr 26219 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐵𝐶𝑥”⟩(cgrG‘𝐺)⟨“𝐵𝑦𝐴”⟩)
371, 2, 14, 5, 11, 13axtgcgrrflx 26165 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝐶))
38 cgraid.2 . . . . . . . . 9 (𝜑𝐵𝐶)
3938ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝐶)
401, 20, 14, 5, 9, 11, 12, 3, 9, 13, 2, 13, 7, 11, 25, 36, 18, 37, 39tgfscgr 26271 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝑦) = (𝐴(dist‘𝐺)𝐶))
411, 2, 14, 5, 12, 13, 7, 11, 40tgcgrcomlr 26183 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(dist‘𝐺)𝑥) = (𝐶(dist‘𝐺)𝐴))
4241eqcomd 2832 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
431, 2, 3, 5, 7, 9, 11, 12, 9, 13, 17, 19, 42trgcgr 26219 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
4443, 22, 313jca 1122 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
4538necomd 3076 . . . . 5 (𝜑𝐶𝐵)
46 cgraid.1 . . . . . 6 (𝜑𝐴𝐵)
4746necomd 3076 . . . . 5 (𝜑𝐵𝐴)
481, 14, 21, 8, 8, 6, 4, 10, 2, 45, 47hlcgrex 26319 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
491, 14, 21, 8, 8, 10, 4, 6, 2, 46, 38hlcgrex 26319 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
50 reeanv 3373 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
5148, 49, 50sylanbrc 583 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
5244, 51reximddv2 3283 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
531, 14, 21, 4, 6, 8, 10, 10, 8, 6iscgra 26512 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴)))
5452, 53mpbird 258 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∃wrex 3144   class class class wbr 5063  ‘cfv 6352  (class class class)co 7148  ⟨“cs3 14194  Basecbs 16473  distcds 16564  TarskiGcstrkg 26133  Itvcitv 26139  LineGclng 26140  cgrGccgrg 26213  ≤Gcleg 26285  hlGchlg 26303  cgrAccgra 26510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-concat 13913  df-s1 13940  df-s2 14200  df-s3 14201  df-trkgc 26151  df-trkgb 26152  df-trkgcb 26153  df-trkg 26156  df-cgrg 26214  df-leg 26286  df-hlg 26304  df-cgra 26511 This theorem is referenced by:  cgraswaplr  26528  oacgr  26535  tgasa1  26561
 Copyright terms: Public domain W3C validator