MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgraswap Structured version   Visualization version   GIF version

Theorem cgraswap 27762
Description: Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgraid.1 (𝜑𝐴𝐵)
cgraid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
cgraswap (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)

Proof of Theorem cgraswap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2736 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2736 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
8 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
10 cgraid.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
12 simpllr 774 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
13 simplr 767 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
14 cgraid.i . . . . . . 7 𝐼 = (Itv‘𝐺)
15 simprlr 778 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
161, 2, 14, 5, 9, 12, 9, 7, 15tgcgrcomlr 27422 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝐵) = (𝐴(dist‘𝐺)𝐵))
1716eqcomd 2742 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝐵))
18 simprrr 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
1918eqcomd 2742 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝐵(dist‘𝐺)𝑦))
20 eqid 2736 . . . . . . . 8 (LineG‘𝐺) = (LineG‘𝐺)
21 cgraid.k . . . . . . . . . . 11 𝐾 = (hlG‘𝐺)
22 simprll 777 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝐵)𝐶)
231, 14, 21, 12, 11, 9, 5, 20, 22hlln 27549 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ (𝐶(LineG‘𝐺)𝐵))
2423orcd 871 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
251, 20, 14, 5, 11, 9, 12, 24colrot1 27501 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑥) ∨ 𝐵 = 𝑥))
26 eqid 2736 . . . . . . . . . 10 (≤G‘𝐺) = (≤G‘𝐺)
271, 14, 21, 12, 11, 9, 5ishlg 27544 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(𝐾𝐵)𝐶 ↔ (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))))
2822, 27mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥𝐵𝐶𝐵 ∧ (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥))))
2928simp3d 1144 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑥)))
3029orcomd 869 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶 ∈ (𝐵𝐼𝑥) ∨ 𝑥 ∈ (𝐵𝐼𝐶)))
31 simprrl 779 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝐵)𝐴)
321, 14, 21, 13, 7, 9, 5ishlg 27544 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(𝐾𝐵)𝐴 ↔ (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))))
3331, 32mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦𝐵𝐴𝐵 ∧ (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦))))
3433simp3d 1144 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑦)))
351, 2, 14, 26, 5, 9, 11, 12, 9, 9, 13, 7, 30, 34, 19, 15tgcgrsub2 27537 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑥) = (𝑦(dist‘𝐺)𝐴))
361, 2, 3, 5, 9, 11, 12, 9, 13, 7, 19, 35, 16trgcgr 27458 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐵𝐶𝑥”⟩(cgrG‘𝐺)⟨“𝐵𝑦𝐴”⟩)
371, 2, 14, 5, 11, 13axtgcgrrflx 27404 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝐶))
38 cgraid.2 . . . . . . . . 9 (𝜑𝐵𝐶)
3938ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝐶)
401, 20, 14, 5, 9, 11, 12, 3, 9, 13, 2, 13, 7, 11, 25, 36, 18, 37, 39tgfscgr 27510 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑥(dist‘𝐺)𝑦) = (𝐴(dist‘𝐺)𝐶))
411, 2, 14, 5, 12, 13, 7, 11, 40tgcgrcomlr 27422 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑦(dist‘𝐺)𝑥) = (𝐶(dist‘𝐺)𝐴))
4241eqcomd 2742 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
431, 2, 3, 5, 7, 9, 11, 12, 9, 13, 17, 19, 42trgcgr 27458 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
4443, 22, 313jca 1128 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
4538necomd 2999 . . . . 5 (𝜑𝐶𝐵)
46 cgraid.1 . . . . . 6 (𝜑𝐴𝐵)
4746necomd 2999 . . . . 5 (𝜑𝐵𝐴)
481, 14, 21, 8, 8, 6, 4, 10, 2, 45, 47hlcgrex 27558 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
491, 14, 21, 8, 8, 10, 4, 6, 2, 46, 38hlcgrex 27558 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
50 reeanv 3217 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
5148, 49, 50sylanbrc 583 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
5244, 51reximddv2 3206 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴))
531, 14, 21, 4, 6, 8, 10, 10, 8, 6iscgra 27751 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐶𝑦(𝐾𝐵)𝐴)))
5452, 53mpbird 256 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  cgrGccgrg 27452  ≤Gcleg 27524  hlGchlg 27542  cgrAccgra 27749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-hlg 27543  df-cgra 27750
This theorem is referenced by:  cgraswaplr  27767  oacgr  27774  tgasa1  27800
  Copyright terms: Public domain W3C validator