MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracom Structured version   Visualization version   GIF version

Theorem cgracom 28756
Description: Angle congruence commutes. Theorem 11.7 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgracom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgracom (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)

Proof of Theorem cgracom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2730 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2730 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐺 ∈ TarskiG)
6 cgracom.d . . . . . 6 (𝜑𝐷𝑃)
76ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐷𝑃)
8 cgracom.e . . . . . 6 (𝜑𝐸𝑃)
98ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐸𝑃)
10 cgracom.f . . . . . 6 (𝜑𝐹𝑃)
1110ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐹𝑃)
12 simpllr 775 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥𝑃)
13 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
1413ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐵𝑃)
15 simplr 768 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦𝑃)
16 cgraid.i . . . . . 6 𝐼 = (Itv‘𝐺)
17 simprlr 779 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷))
1817eqcomd 2736 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐷) = (𝐵(dist‘𝐺)𝑥))
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 28414 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐸) = (𝑥(dist‘𝐺)𝐵))
20 simprrr 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))
2120eqcomd 2736 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐹) = (𝐵(dist‘𝐺)𝑦))
22 cgraid.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
23 cgraid.a . . . . . . . . 9 (𝜑𝐴𝑃)
2423ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐴𝑃)
25 cgraid.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐶𝑃)
27 cgracom.1 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
29 simprll 778 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥(𝐾𝐵)𝐴)
30 simprrl 780 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦(𝐾𝐵)𝐶)
311, 16, 22, 5, 24, 14, 26, 7, 9, 11, 28, 12, 2, 15, 29, 30, 17, 20cgracgr 28752 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝑥(dist‘𝐺)𝑦) = (𝐷(dist‘𝐺)𝐹))
3231eqcomd 2736 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐹) = (𝑥(dist‘𝐺)𝑦))
331, 2, 16, 5, 7, 11, 12, 15, 32tgcgrcomlr 28414 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐹(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝑥))
341, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 33trgcgr 28450 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → ⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
3534, 29, 303jca 1128 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶))
361, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane1 28746 . . . . 5 (𝜑𝐴𝐵)
371, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane3 28748 . . . . 5 (𝜑𝐸𝐷)
381, 16, 22, 13, 8, 6, 4, 23, 2, 36, 37hlcgrex 28550 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)))
391, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane2 28747 . . . . . 6 (𝜑𝐵𝐶)
4039necomd 2981 . . . . 5 (𝜑𝐶𝐵)
411, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane4 28749 . . . . 5 (𝜑𝐸𝐹)
421, 16, 22, 13, 8, 10, 4, 25, 2, 40, 41hlcgrex 28550 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))
43 reeanv 3210 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))))
4438, 42, 43sylanbrc 583 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))))
4535, 44reximddv2 3197 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶))
461, 16, 22, 4, 6, 8, 10, 23, 13, 25iscgra 28743 . 2 (𝜑 → (⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶)))
4745, 46mpbird 257 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  cgrGccgrg 28444  hlGchlg 28534  cgrAccgra 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-hlg 28535  df-cgra 28742
This theorem is referenced by:  cgracol  28762  cgrancol  28763  dfcgra2  28764  tgasa1  28792  isoas  28798
  Copyright terms: Public domain W3C validator