Step | Hyp | Ref
| Expression |
1 | | cgraid.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | eqid 2738 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
3 | | eqid 2738 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
4 | | cgraid.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐺 ∈ TarskiG) |
6 | | cgracom.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
7 | 6 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐷 ∈ 𝑃) |
8 | | cgracom.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
9 | 8 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐸 ∈ 𝑃) |
10 | | cgracom.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
11 | 10 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐹 ∈ 𝑃) |
12 | | simpllr 773 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥 ∈ 𝑃) |
13 | | cgraid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
14 | 13 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐵 ∈ 𝑃) |
15 | | simplr 766 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦 ∈ 𝑃) |
16 | | cgraid.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
17 | | simprlr 777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) |
18 | 17 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐷) = (𝐵(dist‘𝐺)𝑥)) |
19 | 1, 2, 16, 5, 9, 7,
14, 12, 18 | tgcgrcomlr 26841 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐸) = (𝑥(dist‘𝐺)𝐵)) |
20 | | simprrr 779 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)) |
21 | 20 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐹) = (𝐵(dist‘𝐺)𝑦)) |
22 | | cgraid.k |
. . . . . . . 8
⊢ 𝐾 = (hlG‘𝐺) |
23 | | cgraid.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
24 | 23 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐴 ∈ 𝑃) |
25 | | cgraid.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
26 | 25 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐶 ∈ 𝑃) |
27 | | cgracom.1 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
28 | 27 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
29 | | simprll 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥(𝐾‘𝐵)𝐴) |
30 | | simprrl 778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦(𝐾‘𝐵)𝐶) |
31 | 1, 16, 22, 5, 24, 14, 26, 7, 9, 11, 28, 12, 2, 15, 29, 30, 17, 20 | cgracgr 27179 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝑥(dist‘𝐺)𝑦) = (𝐷(dist‘𝐺)𝐹)) |
32 | 31 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐹) = (𝑥(dist‘𝐺)𝑦)) |
33 | 1, 2, 16, 5, 7, 11, 12, 15, 32 | tgcgrcomlr 26841 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐹(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝑥)) |
34 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 33 | trgcgr 26877 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉) |
35 | 34, 29, 30 | 3jca 1127 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶)) |
36 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane1 27173 |
. . . . 5
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
37 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane3 27175 |
. . . . 5
⊢ (𝜑 → 𝐸 ≠ 𝐷) |
38 | 1, 16, 22, 13, 8, 6, 4, 23, 2,
36, 37 | hlcgrex 26977 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷))) |
39 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane2 27174 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 2999 |
. . . . 5
⊢ (𝜑 → 𝐶 ≠ 𝐵) |
41 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane4 27176 |
. . . . 5
⊢ (𝜑 → 𝐸 ≠ 𝐹) |
42 | 1, 16, 22, 13, 8, 10, 4, 25, 2, 40, 41 | hlcgrex 26977 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) |
43 | | reeanv 3294 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) ↔ (∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) |
44 | 38, 42, 43 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) |
45 | 35, 44 | reximddv2 3207 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶)) |
46 | 1, 16, 22, 4, 6, 8,
10, 23, 13, 25 | iscgra 27170 |
. 2
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶))) |
47 | 45, 46 | mpbird 256 |
1
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |