| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cgraid.p | . . . . 5
⊢ 𝑃 = (Base‘𝐺) | 
| 2 |  | eqid 2737 | . . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) | 
| 3 |  | eqid 2737 | . . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) | 
| 4 |  | cgraid.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 5 | 4 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐺 ∈ TarskiG) | 
| 6 |  | cgracom.d | . . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| 7 | 6 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐷 ∈ 𝑃) | 
| 8 |  | cgracom.e | . . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) | 
| 9 | 8 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐸 ∈ 𝑃) | 
| 10 |  | cgracom.f | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| 11 | 10 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐹 ∈ 𝑃) | 
| 12 |  | simpllr 776 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥 ∈ 𝑃) | 
| 13 |  | cgraid.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 14 | 13 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐵 ∈ 𝑃) | 
| 15 |  | simplr 769 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦 ∈ 𝑃) | 
| 16 |  | cgraid.i | . . . . . 6
⊢ 𝐼 = (Itv‘𝐺) | 
| 17 |  | simprlr 780 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) | 
| 18 | 17 | eqcomd 2743 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐷) = (𝐵(dist‘𝐺)𝑥)) | 
| 19 | 1, 2, 16, 5, 9, 7,
14, 12, 18 | tgcgrcomlr 28488 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐸) = (𝑥(dist‘𝐺)𝐵)) | 
| 20 |  | simprrr 782 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)) | 
| 21 | 20 | eqcomd 2743 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐹) = (𝐵(dist‘𝐺)𝑦)) | 
| 22 |  | cgraid.k | . . . . . . . 8
⊢ 𝐾 = (hlG‘𝐺) | 
| 23 |  | cgraid.a | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 24 | 23 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐴 ∈ 𝑃) | 
| 25 |  | cgraid.c | . . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| 26 | 25 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐶 ∈ 𝑃) | 
| 27 |  | cgracom.1 | . . . . . . . . 9
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | 
| 28 | 27 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | 
| 29 |  | simprll 779 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥(𝐾‘𝐵)𝐴) | 
| 30 |  | simprrl 781 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦(𝐾‘𝐵)𝐶) | 
| 31 | 1, 16, 22, 5, 24, 14, 26, 7, 9, 11, 28, 12, 2, 15, 29, 30, 17, 20 | cgracgr 28826 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝑥(dist‘𝐺)𝑦) = (𝐷(dist‘𝐺)𝐹)) | 
| 32 | 31 | eqcomd 2743 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐹) = (𝑥(dist‘𝐺)𝑦)) | 
| 33 | 1, 2, 16, 5, 7, 11, 12, 15, 32 | tgcgrcomlr 28488 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐹(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝑥)) | 
| 34 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 33 | trgcgr 28524 | . . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉) | 
| 35 | 34, 29, 30 | 3jca 1129 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶)) | 
| 36 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane1 28820 | . . . . 5
⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| 37 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane3 28822 | . . . . 5
⊢ (𝜑 → 𝐸 ≠ 𝐷) | 
| 38 | 1, 16, 22, 13, 8, 6, 4, 23, 2,
36, 37 | hlcgrex 28624 | . . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷))) | 
| 39 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane2 28821 | . . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) | 
| 40 | 39 | necomd 2996 | . . . . 5
⊢ (𝜑 → 𝐶 ≠ 𝐵) | 
| 41 | 1, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27 | cgrane4 28823 | . . . . 5
⊢ (𝜑 → 𝐸 ≠ 𝐹) | 
| 42 | 1, 16, 22, 13, 8, 10, 4, 25, 2, 40, 41 | hlcgrex 28624 | . . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) | 
| 43 |  | reeanv 3229 | . . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) ↔ (∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) | 
| 44 | 38, 42, 43 | sylanbrc 583 | . . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾‘𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) | 
| 45 | 35, 44 | reximddv2 3215 | . 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶)) | 
| 46 | 1, 16, 22, 4, 6, 8,
10, 23, 13, 25 | iscgra 28817 | . 2
⊢ (𝜑 → (〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐷𝐸𝐹”〉(cgrG‘𝐺)〈“𝑥𝐵𝑦”〉 ∧ 𝑥(𝐾‘𝐵)𝐴 ∧ 𝑦(𝐾‘𝐵)𝐶))) | 
| 47 | 45, 46 | mpbird 257 | 1
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |