MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracom Structured version   Visualization version   GIF version

Theorem cgracom 28767
Description: Angle congruence commutes. Theorem 11.7 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgracom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgracom (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)

Proof of Theorem cgracom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2734 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2734 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐺 ∈ TarskiG)
6 cgracom.d . . . . . 6 (𝜑𝐷𝑃)
76ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐷𝑃)
8 cgracom.e . . . . . 6 (𝜑𝐸𝑃)
98ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐸𝑃)
10 cgracom.f . . . . . 6 (𝜑𝐹𝑃)
1110ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐹𝑃)
12 simpllr 775 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥𝑃)
13 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
1413ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐵𝑃)
15 simplr 768 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦𝑃)
16 cgraid.i . . . . . 6 𝐼 = (Itv‘𝐺)
17 simprlr 779 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷))
1817eqcomd 2740 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐷) = (𝐵(dist‘𝐺)𝑥))
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 28425 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐸) = (𝑥(dist‘𝐺)𝐵))
20 simprrr 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))
2120eqcomd 2740 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐸(dist‘𝐺)𝐹) = (𝐵(dist‘𝐺)𝑦))
22 cgraid.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
23 cgraid.a . . . . . . . . 9 (𝜑𝐴𝑃)
2423ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐴𝑃)
25 cgraid.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝐶𝑃)
27 cgracom.1 . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
29 simprll 778 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑥(𝐾𝐵)𝐴)
30 simprrl 780 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → 𝑦(𝐾𝐵)𝐶)
311, 16, 22, 5, 24, 14, 26, 7, 9, 11, 28, 12, 2, 15, 29, 30, 17, 20cgracgr 28763 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝑥(dist‘𝐺)𝑦) = (𝐷(dist‘𝐺)𝐹))
3231eqcomd 2740 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐷(dist‘𝐺)𝐹) = (𝑥(dist‘𝐺)𝑦))
331, 2, 16, 5, 7, 11, 12, 15, 32tgcgrcomlr 28425 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (𝐹(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝑥))
341, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 33trgcgr 28461 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → ⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩)
3534, 29, 303jca 1128 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))) → (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶))
361, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane1 28757 . . . . 5 (𝜑𝐴𝐵)
371, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane3 28759 . . . . 5 (𝜑𝐸𝐷)
381, 16, 22, 13, 8, 6, 4, 23, 2, 36, 37hlcgrex 28561 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)))
391, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane2 28758 . . . . . 6 (𝜑𝐵𝐶)
4039necomd 2986 . . . . 5 (𝜑𝐶𝐵)
411, 16, 22, 4, 23, 13, 25, 6, 8, 10, 27cgrane4 28760 . . . . 5 (𝜑𝐸𝐹)
421, 16, 22, 13, 8, 10, 4, 25, 2, 40, 41hlcgrex 28561 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹)))
43 reeanv 3216 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))))
4438, 42, 43sylanbrc 583 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝐵)𝐴 ∧ (𝐵(dist‘𝐺)𝑥) = (𝐸(dist‘𝐺)𝐷)) ∧ (𝑦(𝐾𝐵)𝐶 ∧ (𝐵(dist‘𝐺)𝑦) = (𝐸(dist‘𝐺)𝐹))))
4535, 44reximddv2 3202 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶))
461, 16, 22, 4, 6, 8, 10, 23, 13, 25iscgra 28754 . 2 (𝜑 → (⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐷𝐸𝐹”⟩(cgrG‘𝐺)⟨“𝑥𝐵𝑦”⟩ ∧ 𝑥(𝐾𝐵)𝐴𝑦(𝐾𝐵)𝐶)))
4745, 46mpbird 257 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  ⟨“cs3 14864  Basecbs 17230  distcds 17283  TarskiGcstrkg 28372  Itvcitv 28378  cgrGccgrg 28455  hlGchlg 28545  cgrAccgra 28752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14353  df-word 14536  df-concat 14592  df-s1 14617  df-s2 14870  df-s3 14871  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-leg 28528  df-hlg 28546  df-cgra 28753
This theorem is referenced by:  cgracol  28773  cgrancol  28774  dfcgra2  28775  tgasa1  28803  isoas  28809
  Copyright terms: Public domain W3C validator