MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem4 Structured version   Visualization version   GIF version

Theorem cayhamlem4 22915
Description: Lemma for cayleyhamilton 22917. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cayhamlem.e1 = (.g‘(mulGrp‘𝐴))
cayhamlem.e2 𝐸 = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠   ,𝑛
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐸(𝑛,𝑠,𝑏)   (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem cayhamlem4
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
2 simp1 1136 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
32ad2antrr 725 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑁 ∈ Fin)
4 crngring 20272 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
543ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
65ad2antrr 725 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑅 ∈ Ring)
7 chcoeffeq.b . . . . . 6 𝐵 = (Base‘𝐴)
8 eqid 2740 . . . . . 6 (0g𝐴) = (0g𝐴)
9 chcoeffeq.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
109matring 22470 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
114, 10sylan2 592 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
12 ringcmn 20305 . . . . . . . . 9 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
1311, 12syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ CMnd)
14133adant3 1132 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ CMnd)
1514ad2antrr 725 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐴 ∈ CMnd)
16 nn0ex 12559 . . . . . . 7 0 ∈ V
1716a1i 11 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ℕ0 ∈ V)
183, 6, 10syl2anc 583 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐴 ∈ Ring)
1918adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
20 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝐴) = (mulGrp‘𝐴)
2120, 7mgpbas 20167 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝐴))
22 cayhamlem.e1 . . . . . . . . 9 = (.g‘(mulGrp‘𝐴))
232, 5, 10syl2anc 583 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
2420ringmgp 20266 . . . . . . . . . . 11 (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝐴) ∈ Mnd)
2625ad3antrrr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (mulGrp‘𝐴) ∈ Mnd)
27 simpr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
28 simpll3 1214 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑀𝐵)
2928adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
3021, 22, 26, 27, 29mulgnn0cld 19135 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑀) ∈ 𝐵)
31 eqid 2740 . . . . . . . . . . . 12 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
32 chcoeffeq.u . . . . . . . . . . . 12 𝑈 = (𝑁 cPolyMatToMat 𝑅)
339, 7, 31, 32cpm2mf 22779 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
342, 5, 33syl2anc 583 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
3534ad3antrrr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
36 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ)
37 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏 ∈ (𝐵m (0...𝑠)))
38 chcoeffeq.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
39 chcoeffeq.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
40 chcoeffeq.r . . . . . . . . . . . 12 × = (.r𝑌)
41 chcoeffeq.s . . . . . . . . . . . 12 = (-g𝑌)
42 chcoeffeq.0 . . . . . . . . . . . 12 0 = (0g𝑌)
43 chcoeffeq.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chcoeffeq.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
459, 7, 38, 39, 40, 41, 42, 43, 44, 31chfacfisfcpmat 22882 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
463, 6, 28, 36, 37, 45syl32anc 1378 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
4746ffvelcdmda 7118 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (𝑁 ConstPolyMat 𝑅))
4835, 47ffvelcdmd 7119 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) ∈ 𝐵)
49 eqid 2740 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
507, 49ringcl 20277 . . . . . . . 8 ((𝐴 ∈ Ring ∧ (𝑛 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺𝑛)) ∈ 𝐵) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
5119, 30, 48, 50syl3anc 1371 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
5251fmpttd 7149 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))):ℕ0𝐵)
53 fvexd 6935 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0g𝐴) ∈ V)
54 ovexd 7483 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ V)
559, 7, 38, 39, 40, 41, 42, 43, 44chfacffsupp 22883 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺 finSupp (0g𝑌))
5655anassrs 467 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺 finSupp (0g𝑌))
57 ovex 7481 . . . . . . . . . . . . 13 (𝑁 ConstPolyMat 𝑅) ∈ V
5857, 16pm3.2i 470 . . . . . . . . . . . 12 ((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈ V)
59 elmapg 8897 . . . . . . . . . . . 12 (((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈ V) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)))
6058, 59mp1i 13 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)))
6146, 60mpbird 257 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0))
62 fvex 6933 . . . . . . . . . 10 (0g𝑌) ∈ V
63 fsuppmapnn0ub 14046 . . . . . . . . . 10 ((𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ∧ (0g𝑌) ∈ V) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌))))
6461, 62, 63sylancl 585 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌))))
65 csbov12g 7494 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (𝑧 / 𝑛(𝑛 𝑀)(.r𝐴)𝑧 / 𝑛(𝑈‘(𝐺𝑛))))
66 csbov1g 7495 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑛 𝑀) = (𝑧 / 𝑛𝑛 𝑀))
67 csbvarg 4457 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ0𝑧 / 𝑛𝑛 = 𝑧)
6867oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0 → (𝑧 / 𝑛𝑛 𝑀) = (𝑧 𝑀))
6966, 68eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑛 𝑀) = (𝑧 𝑀))
70 csbfv2g 6969 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑈‘(𝐺𝑛)) = (𝑈𝑧 / 𝑛(𝐺𝑛)))
71 csbfv 6970 . . . . . . . . . . . . . . . . . . . . 21 𝑧 / 𝑛(𝐺𝑛) = (𝐺𝑧)
7271a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝐺𝑛) = (𝐺𝑧))
7372fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0 → (𝑈𝑧 / 𝑛(𝐺𝑛)) = (𝑈‘(𝐺𝑧)))
7470, 73eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑧)))
7569, 74oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑧 / 𝑛(𝑛 𝑀)(.r𝐴)𝑧 / 𝑛(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
7665, 75eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
7776ad2antlr 726 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
78 fveq2 6920 . . . . . . . . . . . . . . . . 17 ((𝐺𝑧) = (0g𝑌) → (𝑈‘(𝐺𝑧)) = (𝑈‘(0g𝑌)))
792, 5jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
8079adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
81 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (0g𝑌) = (0g𝑌)
829, 32, 38, 39, 8, 81m2cpminv0 22788 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g𝑌)) = (0g𝐴))
8380, 82syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (𝑈‘(0g𝑌)) = (0g𝐴))
8483ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑈‘(0g𝑌)) = (0g𝐴))
8578, 84sylan9eqr 2802 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → (𝑈‘(𝐺𝑧)) = (0g𝐴))
8685oveq2d 7464 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))) = ((𝑧 𝑀)(.r𝐴)(0g𝐴)))
8718adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝐴 ∈ Ring)
8825ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (mulGrp‘𝐴) ∈ Mnd)
89 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
9028adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑀𝐵)
9121, 22, 88, 89, 90mulgnn0cld 19135 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑧 𝑀) ∈ 𝐵)
9287, 91jca 511 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵))
9392adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → (𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵))
947, 49, 8ringrz 20317 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵) → ((𝑧 𝑀)(.r𝐴)(0g𝐴)) = (0g𝐴))
9593, 94syl 17 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → ((𝑧 𝑀)(.r𝐴)(0g𝐴)) = (0g𝐴))
9677, 86, 953eqtrd 2784 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))
9796ex 412 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → ((𝐺𝑧) = (0g𝑌) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
9897adantlr 714 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝐺𝑧) = (0g𝑌) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
9998imim2d 57 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10099ralimdva 3173 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → ∀𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
101100reximdva 3174 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10264, 101syld 47 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10356, 102mpd 15 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
10453, 54, 103mptnn0fsupp 14048 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) finSupp (0g𝐴))
1057, 8, 15, 17, 52, 104gsumcl 19957 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) ∈ 𝐵)
10632, 9, 7, 43m2cpminvid 22780 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) ∈ 𝐵) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
1073, 6, 105, 106syl3anc 1371 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
10838, 39pmatring 22719 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
1092, 5, 108syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
110 ringmnd 20270 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
111109, 110syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
112111ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑌 ∈ Mnd)
113 chcoeffeq.w . . . . . . . . . 10 𝑊 = (Base‘𝑌)
11443, 9, 7, 38, 39, 113mat2pmatghm 22757 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑌))
1153, 6, 114syl2anc 583 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑇 ∈ (𝐴 GrpHom 𝑌))
116 ghmmhm 19266 . . . . . . . 8 (𝑇 ∈ (𝐴 GrpHom 𝑌) → 𝑇 ∈ (𝐴 MndHom 𝑌))
117115, 116syl 17 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑇 ∈ (𝐴 MndHom 𝑌))
11823ad3antrrr 729 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
1194, 33sylan2 592 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
1201193adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
121120ad3antrrr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
122121, 47ffvelcdmd 7119 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) ∈ 𝐵)
123118, 30, 122, 50syl3anc 1371 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
1247, 8, 15, 112, 17, 117, 123, 104gsummptmhm 19982 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))))
12543, 9, 7, 38, 39, 113mat2pmatrhm 22761 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌))
1261253adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑇 ∈ (𝐴 RingHom 𝑌))
127126ad3antrrr 729 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ (𝐴 RingHom 𝑌))
1287, 49, 40rhmmul 20512 . . . . . . . . . 10 ((𝑇 ∈ (𝐴 RingHom 𝑌) ∧ (𝑛 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺𝑛)) ∈ 𝐵) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))))
129127, 30, 122, 128syl3anc 1371 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))))
13043, 9, 7, 38, 39, 113mat2pmatmhm 22760 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
1311303adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
132131ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
133 cayhamlem.e2 . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑌))
13421, 22, 133mhmmulg 19155 . . . . . . . . . . 11 ((𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)) ∧ 𝑛 ∈ ℕ0𝑀𝐵) → (𝑇‘(𝑛 𝑀)) = (𝑛𝐸(𝑇𝑀)))
135132, 27, 29, 134syl3anc 1371 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑛 𝑀)) = (𝑛𝐸(𝑇𝑀)))
1362ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
1375ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
13831, 32, 43m2cpminvid2 22782 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
139136, 137, 47, 138syl3anc 1371 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
140135, 139oveq12d 7466 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))) = ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))
141129, 140eqtrd 2780 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))
142141mpteq2dva 5266 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))
143142oveq2d 7464 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))
144124, 143eqtr3d 2782 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))
145144fveq2d 6924 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
146107, 145eqtr3d 2782 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
1471, 146sylan9eqr 2802 . 2 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
148 chcoeffeq.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
149 chcoeffeq.k . . 3 𝐾 = (𝐶𝑀)
150 chcoeffeq.1 . . 3 1 = (1r𝐴)
151 chcoeffeq.m . . 3 = ( ·𝑠𝐴)
1529, 7, 38, 39, 40, 41, 42, 43, 148, 149, 44, 113, 150, 151, 32, 22, 49cayhamlem3 22914 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
153147, 152reximddv2 3221 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  csb 3921  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772   MndHom cmhm 18816  -gcsg 18975  .gcmg 19107   GrpHom cghm 19252  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Poly1cpl1 22199  coe1cco1 22200   Mat cmat 22432   ConstPolyMat ccpmat 22730   matToPolyMat cmat2pmat 22731   cPolyMatToMat ccpmat2mat 22732   CharPlyMat cchpmat 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-cur 8308  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-mdet 22612  df-madu 22661  df-cpmat 22733  df-mat2pmat 22734  df-cpmat2mat 22735  df-decpmat 22790  df-pm2mp 22820  df-chpmat 22854
This theorem is referenced by:  cayleyhamilton0  22916  cayleyhamiltonALT  22918
  Copyright terms: Public domain W3C validator