MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem4 Structured version   Visualization version   GIF version

Theorem cayhamlem4 22803
Description: Lemma for cayleyhamilton 22805. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cayhamlem.e1 = (.g‘(mulGrp‘𝐴))
cayhamlem.e2 𝐸 = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠   ,𝑛
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐸(𝑛,𝑠,𝑏)   (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem cayhamlem4
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
2 simp1 1136 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
32ad2antrr 726 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑁 ∈ Fin)
4 crngring 20163 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
543ad2ant2 1134 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
65ad2antrr 726 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑅 ∈ Ring)
7 chcoeffeq.b . . . . . 6 𝐵 = (Base‘𝐴)
8 eqid 2731 . . . . . 6 (0g𝐴) = (0g𝐴)
9 chcoeffeq.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
109matring 22358 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
114, 10sylan2 593 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
12 ringcmn 20200 . . . . . . . . 9 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
1311, 12syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ CMnd)
14133adant3 1132 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ CMnd)
1514ad2antrr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐴 ∈ CMnd)
16 nn0ex 12387 . . . . . . 7 0 ∈ V
1716a1i 11 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ℕ0 ∈ V)
183, 6, 10syl2anc 584 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐴 ∈ Ring)
1918adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
20 eqid 2731 . . . . . . . . . 10 (mulGrp‘𝐴) = (mulGrp‘𝐴)
2120, 7mgpbas 20063 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝐴))
22 cayhamlem.e1 . . . . . . . . 9 = (.g‘(mulGrp‘𝐴))
232, 5, 10syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
2420ringmgp 20157 . . . . . . . . . . 11 (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd)
2523, 24syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝐴) ∈ Mnd)
2625ad3antrrr 730 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (mulGrp‘𝐴) ∈ Mnd)
27 simpr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
28 simpll3 1215 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑀𝐵)
2928adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
3021, 22, 26, 27, 29mulgnn0cld 19008 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑀) ∈ 𝐵)
31 eqid 2731 . . . . . . . . . . . 12 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
32 chcoeffeq.u . . . . . . . . . . . 12 𝑈 = (𝑁 cPolyMatToMat 𝑅)
339, 7, 31, 32cpm2mf 22667 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
342, 5, 33syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
3534ad3antrrr 730 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
36 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ)
37 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏 ∈ (𝐵m (0...𝑠)))
38 chcoeffeq.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
39 chcoeffeq.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
40 chcoeffeq.r . . . . . . . . . . . 12 × = (.r𝑌)
41 chcoeffeq.s . . . . . . . . . . . 12 = (-g𝑌)
42 chcoeffeq.0 . . . . . . . . . . . 12 0 = (0g𝑌)
43 chcoeffeq.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
44 chcoeffeq.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
459, 7, 38, 39, 40, 41, 42, 43, 44, 31chfacfisfcpmat 22770 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
463, 6, 28, 36, 37, 45syl32anc 1380 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))
4746ffvelcdmda 7017 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (𝑁 ConstPolyMat 𝑅))
4835, 47ffvelcdmd 7018 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) ∈ 𝐵)
49 eqid 2731 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
507, 49ringcl 20168 . . . . . . . 8 ((𝐴 ∈ Ring ∧ (𝑛 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺𝑛)) ∈ 𝐵) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
5119, 30, 48, 50syl3anc 1373 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
5251fmpttd 7048 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))):ℕ0𝐵)
53 fvexd 6837 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0g𝐴) ∈ V)
54 ovexd 7381 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ V)
559, 7, 38, 39, 40, 41, 42, 43, 44chfacffsupp 22771 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺 finSupp (0g𝑌))
5655anassrs 467 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺 finSupp (0g𝑌))
57 ovex 7379 . . . . . . . . . . . . 13 (𝑁 ConstPolyMat 𝑅) ∈ V
5857, 16pm3.2i 470 . . . . . . . . . . . 12 ((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈ V)
59 elmapg 8763 . . . . . . . . . . . 12 (((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈ V) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)))
6058, 59mp1i 13 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)))
6146, 60mpbird 257 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0))
62 fvex 6835 . . . . . . . . . 10 (0g𝑌) ∈ V
63 fsuppmapnn0ub 13902 . . . . . . . . . 10 ((𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m0) ∧ (0g𝑌) ∈ V) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌))))
6461, 62, 63sylancl 586 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌))))
65 csbov12g 7392 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (𝑧 / 𝑛(𝑛 𝑀)(.r𝐴)𝑧 / 𝑛(𝑈‘(𝐺𝑛))))
66 csbov1g 7393 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑛 𝑀) = (𝑧 / 𝑛𝑛 𝑀))
67 csbvarg 4381 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ0𝑧 / 𝑛𝑛 = 𝑧)
6867oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0 → (𝑧 / 𝑛𝑛 𝑀) = (𝑧 𝑀))
6966, 68eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑛 𝑀) = (𝑧 𝑀))
70 csbfv2g 6868 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑈‘(𝐺𝑛)) = (𝑈𝑧 / 𝑛(𝐺𝑛)))
71 csbfv 6869 . . . . . . . . . . . . . . . . . . . . 21 𝑧 / 𝑛(𝐺𝑛) = (𝐺𝑧)
7271a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝐺𝑛) = (𝐺𝑧))
7372fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℕ0 → (𝑈𝑧 / 𝑛(𝐺𝑛)) = (𝑈‘(𝐺𝑧)))
7470, 73eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ0𝑧 / 𝑛(𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑧)))
7569, 74oveq12d 7364 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ0 → (𝑧 / 𝑛(𝑛 𝑀)(.r𝐴)𝑧 / 𝑛(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
7665, 75eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ0𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
7776ad2antlr 727 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))))
78 fveq2 6822 . . . . . . . . . . . . . . . . 17 ((𝐺𝑧) = (0g𝑌) → (𝑈‘(𝐺𝑧)) = (𝑈‘(0g𝑌)))
792, 5jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
8079adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
81 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (0g𝑌) = (0g𝑌)
829, 32, 38, 39, 8, 81m2cpminv0 22676 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g𝑌)) = (0g𝐴))
8380, 82syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (𝑈‘(0g𝑌)) = (0g𝐴))
8483ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑈‘(0g𝑌)) = (0g𝐴))
8578, 84sylan9eqr 2788 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → (𝑈‘(𝐺𝑧)) = (0g𝐴))
8685oveq2d 7362 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → ((𝑧 𝑀)(.r𝐴)(𝑈‘(𝐺𝑧))) = ((𝑧 𝑀)(.r𝐴)(0g𝐴)))
8718adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝐴 ∈ Ring)
8825ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (mulGrp‘𝐴) ∈ Mnd)
89 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ0)
9028adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑀𝐵)
9121, 22, 88, 89, 90mulgnn0cld 19008 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑧 𝑀) ∈ 𝐵)
9287, 91jca 511 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵))
9392adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → (𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵))
947, 49, 8ringrz 20212 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Ring ∧ (𝑧 𝑀) ∈ 𝐵) → ((𝑧 𝑀)(.r𝐴)(0g𝐴)) = (0g𝐴))
9593, 94syl 17 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → ((𝑧 𝑀)(.r𝐴)(0g𝐴)) = (0g𝐴))
9677, 86, 953eqtrd 2770 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺𝑧) = (0g𝑌)) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))
9796ex 412 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → ((𝐺𝑧) = (0g𝑌) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
9897adantlr 715 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝐺𝑧) = (0g𝑌) → 𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
9998imim2d 57 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10099ralimdva 3144 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) → (∀𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → ∀𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
101100reximdva 3145 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧 → (𝐺𝑧) = (0g𝑌)) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10264, 101syld 47 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐺 finSupp (0g𝑌) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴))))
10356, 102mpd 15 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ∃𝑤 ∈ ℕ0𝑧 ∈ ℕ0 (𝑤 < 𝑧𝑧 / 𝑛((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) = (0g𝐴)))
10453, 54, 103mptnn0fsupp 13904 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) finSupp (0g𝐴))
1057, 8, 15, 17, 52, 104gsumcl 19827 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) ∈ 𝐵)
10632, 9, 7, 43m2cpminvid 22668 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) ∈ 𝐵) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
1073, 6, 105, 106syl3anc 1373 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
10838, 39pmatring 22607 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
1092, 5, 108syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
110 ringmnd 20161 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
111109, 110syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
112111ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑌 ∈ Mnd)
113 chcoeffeq.w . . . . . . . . . 10 𝑊 = (Base‘𝑌)
11443, 9, 7, 38, 39, 113mat2pmatghm 22645 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑌))
1153, 6, 114syl2anc 584 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑇 ∈ (𝐴 GrpHom 𝑌))
116 ghmmhm 19138 . . . . . . . 8 (𝑇 ∈ (𝐴 GrpHom 𝑌) → 𝑇 ∈ (𝐴 MndHom 𝑌))
117115, 116syl 17 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑇 ∈ (𝐴 MndHom 𝑌))
11823ad3antrrr 730 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring)
1194, 33sylan2 593 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
1201193adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
121120ad3antrrr 730 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵)
122121, 47ffvelcdmd 7018 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) ∈ 𝐵)
123118, 30, 122, 50syl3anc 1373 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))) ∈ 𝐵)
1247, 8, 15, 112, 17, 117, 123, 104gsummptmhm 19852 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))))
12543, 9, 7, 38, 39, 113mat2pmatrhm 22649 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌))
1261253adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑇 ∈ (𝐴 RingHom 𝑌))
127126ad3antrrr 730 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ (𝐴 RingHom 𝑌))
1287, 49, 40rhmmul 20403 . . . . . . . . . 10 ((𝑇 ∈ (𝐴 RingHom 𝑌) ∧ (𝑛 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺𝑛)) ∈ 𝐵) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))))
129127, 30, 122, 128syl3anc 1373 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))))
13043, 9, 7, 38, 39, 113mat2pmatmhm 22648 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
1311303adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
132131ad3antrrr 730 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)))
133 cayhamlem.e2 . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑌))
13421, 22, 133mhmmulg 19028 . . . . . . . . . . 11 ((𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)) ∧ 𝑛 ∈ ℕ0𝑀𝐵) → (𝑇‘(𝑛 𝑀)) = (𝑛𝐸(𝑇𝑀)))
135132, 27, 29, 134syl3anc 1373 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑛 𝑀)) = (𝑛𝐸(𝑇𝑀)))
1362ad3antrrr 730 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
1375ad3antrrr 730 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
13831, 32, 43m2cpminvid2 22670 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
139136, 137, 47, 138syl3anc 1373 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺𝑛))) = (𝐺𝑛))
140135, 139oveq12d 7364 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑇‘(𝑛 𝑀)) × (𝑇‘(𝑈‘(𝐺𝑛)))) = ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))
141129, 140eqtrd 2766 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))) = ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))
142141mpteq2dva 5182 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))
143142oveq2d 7362 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))
144124, 143eqtr3d 2768 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛)))))
145144fveq2d 6826 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
146107, 145eqtr3d 2768 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
1471, 146sylan9eqr 2788 . 2 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
148 chcoeffeq.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
149 chcoeffeq.k . . 3 𝐾 = (𝐶𝑀)
150 chcoeffeq.1 . . 3 1 = (1r𝐴)
151 chcoeffeq.m . . 3 = ( ·𝑠𝐴)
1529, 7, 38, 39, 40, 41, 42, 43, 148, 149, 44, 113, 150, 151, 32, 22, 49cayhamlem3 22802 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀)(.r𝐴)(𝑈‘(𝐺𝑛))))))
153147, 152reximddv2 3191 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇𝑀)) × (𝐺𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  csb 3845  ifcif 4472   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cmin 11344  cn 12125  0cn0 12381  ...cfz 13407  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642   MndHom cmhm 18689  -gcsg 18848  .gcmg 18980   GrpHom cghm 19124  CMndccmn 19692  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  Poly1cpl1 22089  coe1cco1 22090   Mat cmat 22322   ConstPolyMat ccpmat 22618   matToPolyMat cmat2pmat 22619   cPolyMatToMat ccpmat2mat 22620   CharPlyMat cchpmat 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-cur 8197  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-symg 19282  df-pmtr 19354  df-psgn 19403  df-evpm 19404  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-dsmm 21669  df-frlm 21684  df-assa 21790  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-mamu 22306  df-mat 22323  df-mdet 22500  df-madu 22549  df-cpmat 22621  df-mat2pmat 22622  df-cpmat2mat 22623  df-decpmat 22678  df-pm2mp 22708  df-chpmat 22742
This theorem is referenced by:  cayleyhamilton0  22804  cayleyhamiltonALT  22806
  Copyright terms: Public domain W3C validator