Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . 3
⊢ ((𝐴 Σg
(𝑛 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
2 | | simp1 1135 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
3 | 2 | ad2antrr 723 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑁 ∈ Fin) |
4 | | crngring 19795 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
5 | 4 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
6 | 5 | ad2antrr 723 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑅 ∈ Ring) |
7 | | chcoeffeq.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
8 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐴) = (0g‘𝐴) |
9 | | chcoeffeq.a |
. . . . . . . . . . 11
⊢ 𝐴 = (𝑁 Mat 𝑅) |
10 | 9 | matring 21592 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
11 | 4, 10 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
12 | | ringcmn 19820 |
. . . . . . . . 9
⊢ (𝐴 ∈ Ring → 𝐴 ∈ CMnd) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ CMnd) |
14 | 13 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ CMnd) |
15 | 14 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐴 ∈ CMnd) |
16 | | nn0ex 12239 |
. . . . . . 7
⊢
ℕ0 ∈ V |
17 | 16 | a1i 11 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ℕ0 ∈
V) |
18 | 3, 6, 10 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐴 ∈ Ring) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring) |
20 | 2, 5, 10 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ Ring) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝐴) =
(mulGrp‘𝐴) |
22 | 21 | ringmgp 19789 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ring →
(mulGrp‘𝐴) ∈
Mnd) |
23 | 20, 22 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝐴) ∈ Mnd) |
24 | 23 | ad3antrrr 727 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) →
(mulGrp‘𝐴) ∈
Mnd) |
25 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
26 | | simpll3 1213 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑀 ∈ 𝐵) |
27 | 26 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
28 | 21, 7 | mgpbas 19726 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝐴)) |
29 | | cayhamlem.e1 |
. . . . . . . . . 10
⊢ ↑ =
(.g‘(mulGrp‘𝐴)) |
30 | 28, 29 | mulgnn0cl 18720 |
. . . . . . . . 9
⊢
(((mulGrp‘𝐴)
∈ Mnd ∧ 𝑛 ∈
ℕ0 ∧ 𝑀
∈ 𝐵) → (𝑛 ↑ 𝑀) ∈ 𝐵) |
31 | 24, 25, 27, 30 | syl3anc 1370 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑀) ∈ 𝐵) |
32 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) |
33 | | chcoeffeq.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
34 | 9, 7, 32, 33 | cpm2mf 21901 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
35 | 2, 5, 34 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
36 | 35 | ad3antrrr 727 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
37 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ) |
38 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) |
39 | | chcoeffeq.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
40 | | chcoeffeq.y |
. . . . . . . . . . . 12
⊢ 𝑌 = (𝑁 Mat 𝑃) |
41 | | chcoeffeq.r |
. . . . . . . . . . . 12
⊢ × =
(.r‘𝑌) |
42 | | chcoeffeq.s |
. . . . . . . . . . . 12
⊢ − =
(-g‘𝑌) |
43 | | chcoeffeq.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑌) |
44 | | chcoeffeq.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
45 | | chcoeffeq.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
46 | 9, 7, 39, 40, 41, 42, 43, 44, 45, 32 | chfacfisfcpmat 22004 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) |
47 | 3, 6, 26, 37, 38, 46 | syl32anc 1377 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅)) |
48 | 47 | ffvelrnda 6961 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) |
49 | 36, 48 | ffvelrnd 6962 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) |
50 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝐴) = (.r‘𝐴) |
51 | 7, 50 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ring ∧ (𝑛 ↑ 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
52 | 19, 31, 49, 51 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
53 | 52 | fmpttd 6989 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))):ℕ0⟶𝐵) |
54 | | fvexd 6789 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (0g‘𝐴) ∈ V) |
55 | | ovexd 7310 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ V) |
56 | 9, 7, 39, 40, 41, 42, 43, 44, 45 | chfacffsupp 22005 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) |
57 | 56 | anassrs 468 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺 finSupp (0g‘𝑌)) |
58 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (𝑁 ConstPolyMat 𝑅) ∈ V |
59 | 58, 16 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢ ((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈
V) |
60 | | elmapg 8628 |
. . . . . . . . . . . 12
⊢ (((𝑁 ConstPolyMat 𝑅) ∈ V ∧ ℕ0 ∈
V) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m ℕ0)
↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))) |
61 | 59, 60 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m ℕ0)
↔ 𝐺:ℕ0⟶(𝑁 ConstPolyMat 𝑅))) |
62 | 47, 61 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m
ℕ0)) |
63 | | fvex 6787 |
. . . . . . . . . 10
⊢
(0g‘𝑌) ∈ V |
64 | | fsuppmapnn0ub 13715 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ ((𝑁 ConstPolyMat 𝑅) ↑m ℕ0)
∧ (0g‘𝑌) ∈ V) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)))) |
65 | 62, 63, 64 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)))) |
66 | | csbov12g 7319 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (⦋𝑧 / 𝑛⦌(𝑛 ↑ 𝑀)(.r‘𝐴)⦋𝑧 / 𝑛⦌(𝑈‘(𝐺‘𝑛)))) |
67 | | csbov1g 7320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀) = (⦋𝑧 / 𝑛⦌𝑛 ↑ 𝑀)) |
68 | | csbvarg 4365 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌𝑛 = 𝑧) |
69 | 68 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ (⦋𝑧 /
𝑛⦌𝑛 ↑ 𝑀) = (𝑧 ↑ 𝑀)) |
70 | 67, 69 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀) = (𝑧 ↑ 𝑀)) |
71 | | csbfv2g 6818 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑈‘(𝐺‘𝑛)) = (𝑈‘⦋𝑧 / 𝑛⦌(𝐺‘𝑛))) |
72 | | csbfv 6819 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⦋𝑧 /
𝑛⦌(𝐺‘𝑛) = (𝐺‘𝑧) |
73 | 72 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝐺‘𝑛) = (𝐺‘𝑧)) |
74 | 73 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℕ0
→ (𝑈‘⦋𝑧 / 𝑛⦌(𝐺‘𝑛)) = (𝑈‘(𝐺‘𝑧))) |
75 | 71, 74 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌(𝑈‘(𝐺‘𝑛)) = (𝑈‘(𝐺‘𝑧))) |
76 | 70, 75 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℕ0
→ (⦋𝑧 /
𝑛⦌(𝑛 ↑ 𝑀)(.r‘𝐴)⦋𝑧 / 𝑛⦌(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
77 | 66, 76 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ0
→ ⦋𝑧 /
𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
78 | 77 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧)))) |
79 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧) = (0g‘𝑌) → (𝑈‘(𝐺‘𝑧)) = (𝑈‘(0g‘𝑌))) |
80 | 2, 5 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
82 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘𝑌) = (0g‘𝑌) |
83 | 9, 33, 39, 40, 8, 82 | m2cpminv0 21910 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
84 | 81, 83 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
85 | 84 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑈‘(0g‘𝑌)) = (0g‘𝐴)) |
86 | 79, 85 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → (𝑈‘(𝐺‘𝑧)) = (0g‘𝐴)) |
87 | 86 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑧))) = ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴))) |
88 | 18 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝐴 ∈ Ring) |
89 | 23 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) →
(mulGrp‘𝐴) ∈
Mnd) |
90 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑧 ∈
ℕ0) |
91 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
92 | 28, 29 | mulgnn0cl 18720 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((mulGrp‘𝐴)
∈ Mnd ∧ 𝑧 ∈
ℕ0 ∧ 𝑀
∈ 𝐵) → (𝑧 ↑ 𝑀) ∈ 𝐵) |
93 | 89, 90, 91, 92 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝑧 ↑ 𝑀) ∈ 𝐵) |
94 | 88, 93 | jca 512 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → (𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵)) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → (𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵)) |
96 | 7, 50, 8 | ringrz 19827 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ Ring ∧ (𝑧 ↑ 𝑀) ∈ 𝐵) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴)) = (0g‘𝐴)) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ((𝑧 ↑ 𝑀)(.r‘𝐴)(0g‘𝐴)) = (0g‘𝐴)) |
98 | 78, 87, 97 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) ∧ (𝐺‘𝑧) = (0g‘𝑌)) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)) |
99 | 98 | ex 413 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑧 ∈ ℕ0) → ((𝐺‘𝑧) = (0g‘𝑌) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
100 | 99 | adantlr 712 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0)
→ ((𝐺‘𝑧) = (0g‘𝑌) → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
101 | 100 | imim2d 57 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0)
→ ((𝑤 < 𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → (𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
102 | 101 | ralimdva 3108 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑤 ∈ ℕ0) →
(∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → ∀𝑧 ∈ ℕ0 (𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
103 | 102 | reximdva 3203 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (∃𝑤 ∈ ℕ0 ∀𝑧 ∈ ℕ0
(𝑤 < 𝑧 → (𝐺‘𝑧) = (0g‘𝑌)) → ∃𝑤 ∈ ℕ0 ∀𝑧 ∈ ℕ0
(𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
104 | 65, 103 | syld 47 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐺 finSupp (0g‘𝑌) → ∃𝑤 ∈ ℕ0
∀𝑧 ∈
ℕ0 (𝑤 <
𝑧 →
⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴)))) |
105 | 57, 104 | mpd 15 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ∃𝑤 ∈ ℕ0 ∀𝑧 ∈ ℕ0
(𝑤 < 𝑧 → ⦋𝑧 / 𝑛⦌((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) = (0g‘𝐴))) |
106 | 54, 55, 105 | mptnn0fsupp 13717 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) finSupp (0g‘𝐴)) |
107 | 7, 8, 15, 17, 53, 106 | gsumcl 19516 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) ∈ 𝐵) |
108 | 33, 9, 7, 44 | m2cpminvid 21902 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐴 Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) ∈ 𝐵) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
109 | 3, 6, 107, 108 | syl3anc 1370 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
110 | 39, 40 | pmatring 21841 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
111 | 2, 5, 110 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
112 | | ringmnd 19793 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
113 | 111, 112 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Mnd) |
114 | 113 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑌 ∈ Mnd) |
115 | | chcoeffeq.w |
. . . . . . . . . 10
⊢ 𝑊 = (Base‘𝑌) |
116 | 44, 9, 7, 39, 40, 115 | mat2pmatghm 21879 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑌)) |
117 | 3, 6, 116 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑇 ∈ (𝐴 GrpHom 𝑌)) |
118 | | ghmmhm 18844 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝐴 GrpHom 𝑌) → 𝑇 ∈ (𝐴 MndHom 𝑌)) |
119 | 117, 118 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑇 ∈ (𝐴 MndHom 𝑌)) |
120 | 20 | ad3antrrr 727 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ Ring) |
121 | 4, 34 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
122 | 121 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
123 | 122 | ad3antrrr 727 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑈:(𝑁 ConstPolyMat 𝑅)⟶𝐵) |
124 | 123, 48 | ffvelrnd 6962 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) |
125 | 120, 31, 124, 51 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))) ∈ 𝐵) |
126 | 7, 8, 15, 114, 17, 119, 125, 106 | gsummptmhm 19541 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) |
127 | 44, 9, 7, 39, 40, 115 | mat2pmatrhm 21883 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
128 | 127 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
129 | 128 | ad3antrrr 727 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ (𝐴 RingHom 𝑌)) |
130 | 7, 50, 41 | rhmmul 19971 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ (𝐴 RingHom 𝑌) ∧ (𝑛 ↑ 𝑀) ∈ 𝐵 ∧ (𝑈‘(𝐺‘𝑛)) ∈ 𝐵) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
131 | 129, 31, 124, 130 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛))))) |
132 | 44, 9, 7, 39, 40, 115 | mat2pmatmhm 21882 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
133 | 132 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
134 | 133 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌))) |
135 | | cayhamlem.e2 |
. . . . . . . . . . . 12
⊢ 𝐸 =
(.g‘(mulGrp‘𝑌)) |
136 | 28, 29, 135 | mhmmulg 18744 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑌)) ∧ 𝑛 ∈ ℕ0 ∧ 𝑀 ∈ 𝐵) → (𝑇‘(𝑛 ↑ 𝑀)) = (𝑛𝐸(𝑇‘𝑀))) |
137 | 134, 25, 27, 136 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑛 ↑ 𝑀)) = (𝑛𝐸(𝑇‘𝑀))) |
138 | 2 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
139 | 5 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
140 | 32, 33, 44 | m2cpminvid2 21904 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐺‘𝑛) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
141 | 138, 139,
48, 140 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑈‘(𝐺‘𝑛))) = (𝐺‘𝑛)) |
142 | 137, 141 | oveq12d 7293 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → ((𝑇‘(𝑛 ↑ 𝑀)) × (𝑇‘(𝑈‘(𝐺‘𝑛)))) = ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) |
143 | 131, 142 | eqtrd 2778 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))) = ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))) |
144 | 143 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ ℕ0 ↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))) |
145 | 144 | oveq2d 7291 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ ℕ0
↦ (𝑇‘((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) |
146 | 126, 145 | eqtr3d 2780 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) = (𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛))))) |
147 | 146 | fveq2d 6778 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈‘(𝑇‘(𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
148 | 109, 147 | eqtr3d 2780 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛))))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
149 | 1, 148 | sylan9eqr 2800 |
. 2
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |
150 | | chcoeffeq.c |
. . 3
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
151 | | chcoeffeq.k |
. . 3
⊢ 𝐾 = (𝐶‘𝑀) |
152 | | chcoeffeq.1 |
. . 3
⊢ 1 =
(1r‘𝐴) |
153 | | chcoeffeq.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝐴) |
154 | 9, 7, 39, 40, 41, 42, 43, 44, 150, 151, 45, 115, 152, 153, 33, 29, 50 | cayhamlem3 22036 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀)(.r‘𝐴)(𝑈‘(𝐺‘𝑛)))))) |
155 | 149, 154 | reximddv2 3207 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0
↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) |