MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumfi Structured version   Visualization version   GIF version

Theorem cpmadugsumfi 20961
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
cpmadugsum.g + = (+g𝑌)
cpmadugsum.s = (-g𝑌)
cpmadugsum.i 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
cpmadugsum.j 𝐽 = (𝑁 maAdju 𝑃)
Assertion
Ref Expression
cpmadugsumfi ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏,𝑠,𝑇   ,𝑖   ,𝑖   𝐴,𝑏,𝑠   𝐵,𝑏,𝑠   𝐼,𝑏,𝑖,𝑠   𝐽,𝑏,𝑖,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑖   𝑅,𝑏,𝑠   𝑇,𝑏,𝑠   𝑋,𝑏,𝑠   𝑌,𝑏,𝑠   ,𝑠,𝑏   · ,𝑏,𝑠
Allowed substitution hints:   𝐴(𝑖)   𝑃(𝑠,𝑏)   + (𝑖,𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑠,𝑏)

Proof of Theorem cpmadugsumfi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6850 . . 3 ((𝐽𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))) → (𝐼 × (𝐽𝐼)) = (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))))
2 cpmadugsum.i . . . . . 6 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
32a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝐼 = ((𝑋 · 1 ) (𝑇𝑀)))
43oveq1d 6857 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) = (((𝑋 · 1 ) (𝑇𝑀)) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))))
5 eqid 2765 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
6 cpmadugsum.r . . . . 5 × = (.r𝑌)
7 cpmadugsum.s . . . . 5 = (-g𝑌)
8 crngring 18825 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98anim2i 610 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1093adant3 1162 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1110ad2antrr 717 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 cpmadugsum.p . . . . . . 7 𝑃 = (Poly1𝑅)
13 cpmadugsum.y . . . . . . 7 𝑌 = (𝑁 Mat 𝑃)
1412, 13pmatring 20777 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
1511, 14syl 17 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑌 ∈ Ring)
1612, 13pmatlmod 20778 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
178, 16sylan2 586 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
188adantl 473 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
19 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
20 eqid 2765 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2119, 12, 20vr1cl 19860 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2218, 21syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
2312ply1crng 19841 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2413matsca2 20502 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
2523, 24sylan2 586 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
2625fveq2d 6379 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
2722, 26eleqtrd 2846 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
288, 14sylan2 586 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
29 cpmadugsum.1 . . . . . . . . . 10 1 = (1r𝑌)
305, 29ringidcl 18835 . . . . . . . . 9 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
3128, 30syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 1 ∈ (Base‘𝑌))
32 eqid 2765 . . . . . . . . 9 (Scalar‘𝑌) = (Scalar‘𝑌)
33 cpmadugsum.m . . . . . . . . 9 · = ( ·𝑠𝑌)
34 eqid 2765 . . . . . . . . 9 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
355, 32, 33, 34lmodvscl 19149 . . . . . . . 8 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
3617, 27, 31, 35syl3anc 1490 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋 · 1 ) ∈ (Base‘𝑌))
37363adant3 1162 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
3837ad2antrr 717 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
39 cpmadugsum.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
40 cpmadugsum.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
41 cpmadugsum.b . . . . . . . 8 𝐵 = (Base‘𝐴)
4239, 40, 41, 12, 13mat2pmatbas 20810 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
438, 42syl3an2 1203 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
4443ad2antrr 717 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑇𝑀) ∈ (Base‘𝑌))
45 ringcmn 18848 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
4628, 45syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd)
47463adant3 1162 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
4847ad2antrr 717 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑌 ∈ CMnd)
49 fzfid 12980 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (0...𝑠) ∈ Fin)
5010ad3antrrr 721 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
51 elmapi 8082 . . . . . . . . . . 11 (𝑏 ∈ (𝐵𝑚 (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
52 ffvelrn 6547 . . . . . . . . . . . 12 ((𝑏:(0...𝑠)⟶𝐵𝑛 ∈ (0...𝑠)) → (𝑏𝑛) ∈ 𝐵)
5352ex 401 . . . . . . . . . . 11 (𝑏:(0...𝑠)⟶𝐵 → (𝑛 ∈ (0...𝑠) → (𝑏𝑛) ∈ 𝐵))
5451, 53syl 17 . . . . . . . . . 10 (𝑏 ∈ (𝐵𝑚 (0...𝑠)) → (𝑛 ∈ (0...𝑠) → (𝑏𝑛) ∈ 𝐵))
5554adantl 473 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑛 ∈ (0...𝑠) → (𝑏𝑛) ∈ 𝐵))
5655imp 395 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → (𝑏𝑛) ∈ 𝐵)
57 elfznn0 12640 . . . . . . . . 9 (𝑛 ∈ (0...𝑠) → 𝑛 ∈ ℕ0)
5857adantl 473 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → 𝑛 ∈ ℕ0)
59 cpmadugsum.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑃))
6040, 41, 39, 12, 13, 5, 33, 59, 19mat2pmatscmxcl 20824 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏𝑛) ∈ 𝐵𝑛 ∈ ℕ0)) → ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
6150, 56, 58, 60syl12anc 865 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
6261ralrimiva 3113 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → ∀𝑛 ∈ (0...𝑠)((𝑛 𝑋) · (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
635, 48, 49, 62gsummptcl 18632 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))) ∈ (Base‘𝑌))
645, 6, 7, 15, 38, 44, 63rngsubdir 18867 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (((𝑋 · 1 ) (𝑇𝑀)) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) = (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) ((𝑇𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))))))
65 oveq1 6849 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑛 𝑋) = (𝑖 𝑋))
66 2fveq3 6380 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑖)))
6765, 66oveq12d 6860 . . . . . . . . 9 (𝑛 = 𝑖 → ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))) = ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
6867cbvmptv 4909 . . . . . . . 8 (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
6968oveq2i 6853 . . . . . . 7 (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
7069oveq2i 6853 . . . . . 6 ((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
7169oveq2i 6853 . . . . . 6 ((𝑇𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) = ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
7270, 71oveq12i 6854 . . . . 5 (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) ((𝑇𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))))) = (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
73 cpmadugsum.g . . . . . . 7 + = (+g𝑌)
7440, 41, 12, 13, 39, 19, 59, 33, 6, 29, 73, 7cpmadugsumlemF 20960 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
7574anassrs 459 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
7672, 75syl5eq 2811 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) ((𝑇𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
774, 64, 763eqtrd 2803 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
781, 77sylan9eqr 2821 . 2 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ (𝐽𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛)))))) → (𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
79 cpmadugsum.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑃)
8013, 79, 5maduf 20724 . . . . . 6 (𝑃 ∈ CRing → 𝐽:(Base‘𝑌)⟶(Base‘𝑌))
8123, 80syl 17 . . . . 5 (𝑅 ∈ CRing → 𝐽:(Base‘𝑌)⟶(Base‘𝑌))
82813ad2ant2 1164 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐽:(Base‘𝑌)⟶(Base‘𝑌))
8340, 41, 12, 13, 19, 39, 7, 33, 29, 2chmatcl 20912 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐼 ∈ (Base‘𝑌))
848, 83syl3an2 1203 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐼 ∈ (Base‘𝑌))
8582, 84ffvelrnd 6550 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐽𝐼) ∈ (Base‘𝑌))
8612, 13, 5, 33, 59, 19, 39, 40, 41pmatcollpw3fi1 20872 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ (𝐽𝐼) ∈ (Base‘𝑌)) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐽𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))))
8785, 86syld3an3 1528 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐽𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) · (𝑇‘(𝑏𝑛))))))
8878, 87reximddv2 3167 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520  cn 11274  0cn0 11538  ...cfz 12533  Basecbs 16130  +gcplusg 16214  .rcmulr 16215  Scalarcsca 16217   ·𝑠 cvsca 16218   Σg cgsu 16367  -gcsg 17691  .gcmg 17807  CMndccmn 18459  mulGrpcmgp 18756  1rcur 18768  Ringcrg 18814  CRingccrg 18815  LModclmod 19132  var1cv1 19819  Poly1cpl1 19820   Mat cmat 20489   maAdju cmadu 20715   matToPolyMat cmat2pmat 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-xor 1634  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-cur 7596  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-s1 13567  df-substr 13617  df-pfx 13662  df-splice 13765  df-reverse 13783  df-s2 13877  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-0g 16368  df-gsum 16369  df-prds 16374  df-pws 16376  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-ghm 17922  df-gim 17965  df-cntz 18013  df-oppg 18039  df-symg 18061  df-pmtr 18125  df-psgn 18174  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-srg 18773  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-rnghom 18984  df-drng 19018  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-assa 19586  df-ascl 19588  df-psr 19630  df-mvr 19631  df-mpl 19632  df-opsr 19634  df-psr1 19823  df-vr1 19824  df-ply1 19825  df-coe1 19826  df-cnfld 20020  df-zring 20092  df-zrh 20125  df-dsmm 20352  df-frlm 20367  df-mamu 20466  df-mat 20490  df-mdet 20668  df-madu 20717  df-mat2pmat 20791  df-decpmat 20847
This theorem is referenced by:  cpmadugsum  20962
  Copyright terms: Public domain W3C validator