Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . 3
⊢ ((𝐽‘𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))) → (𝐼 × (𝐽‘𝐼)) = (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))))) |
2 | | cpmadugsum.i |
. . . . . 6
⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
3 | 2 | a1i 11 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
4 | 3 | oveq1d 7270 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) = (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))))) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
6 | | cpmadugsum.r |
. . . . 5
⊢ × =
(.r‘𝑌) |
7 | | cpmadugsum.s |
. . . . 5
⊢ − =
(-g‘𝑌) |
8 | | crngring 19710 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
9 | 8 | anim2i 616 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
10 | 9 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
11 | 10 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
12 | | cpmadugsum.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
13 | | cpmadugsum.y |
. . . . . . 7
⊢ 𝑌 = (𝑁 Mat 𝑃) |
14 | 12, 13 | pmatring 21749 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
15 | 11, 14 | syl 17 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑌 ∈ Ring) |
16 | 12, 13 | pmatlmod 21750 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
17 | 8, 16 | sylan2 592 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
18 | 8 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
19 | | cpmadugsum.x |
. . . . . . . . . . 11
⊢ 𝑋 = (var1‘𝑅) |
20 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝑃) |
21 | 19, 12, 20 | vr1cl 21298 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
22 | 18, 21 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
23 | 12 | ply1crng 21279 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
24 | 13 | matsca2 21477 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
25 | 23, 24 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
26 | 25 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘𝑃) =
(Base‘(Scalar‘𝑌))) |
27 | 22, 26 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈
(Base‘(Scalar‘𝑌))) |
28 | 8, 14 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
29 | | cpmadugsum.1 |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑌) |
30 | 5, 29 | ringidcl 19722 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) |
31 | 28, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 1 ∈
(Base‘𝑌)) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
33 | | cpmadugsum.m |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑌) |
34 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
35 | 5, 32, 33, 34 | lmodvscl 20055 |
. . . . . . . 8
⊢ ((𝑌 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
36 | 17, 27, 31, 35 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
37 | 36 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
38 | 37 | ad2antrr 722 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
39 | | cpmadugsum.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
40 | | cpmadugsum.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
41 | | cpmadugsum.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
42 | 39, 40, 41, 12, 13 | mat2pmatbas 21783 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
43 | 8, 42 | syl3an2 1162 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
44 | 43 | ad2antrr 722 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
45 | | ringcmn 19735 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) |
46 | 28, 45 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd) |
47 | 46 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
48 | 47 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑌 ∈ CMnd) |
49 | | fzfid 13621 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (0...𝑠) ∈ Fin) |
50 | 10 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
51 | | elmapi 8595 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
52 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑛 ∈ (0...𝑠)) → (𝑏‘𝑛) ∈ 𝐵) |
53 | 52 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑏:(0...𝑠)⟶𝐵 → (𝑛 ∈ (0...𝑠) → (𝑏‘𝑛) ∈ 𝐵)) |
54 | 51, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → (𝑛 ∈ (0...𝑠) → (𝑏‘𝑛) ∈ 𝐵)) |
55 | 54 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑛 ∈ (0...𝑠) → (𝑏‘𝑛) ∈ 𝐵)) |
56 | 55 | imp 406 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → (𝑏‘𝑛) ∈ 𝐵) |
57 | | elfznn0 13278 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...𝑠) → 𝑛 ∈ ℕ0) |
58 | 57 | adantl 481 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → 𝑛 ∈ ℕ0) |
59 | | cpmadugsum.e |
. . . . . . . . 9
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
60 | 40, 41, 39, 12, 13, 5, 33, 59, 19 | mat2pmatscmxcl 21797 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑛) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) → ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))) ∈ (Base‘𝑌)) |
61 | 50, 56, 58, 60 | syl12anc 833 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑛 ∈ (0...𝑠)) → ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))) ∈ (Base‘𝑌)) |
62 | 61 | ralrimiva 3107 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ∀𝑛 ∈ (0...𝑠)((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))) ∈ (Base‘𝑌)) |
63 | 5, 48, 49, 62 | gsummptcl 19483 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))) ∈ (Base‘𝑌)) |
64 | 5, 6, 7, 15, 38, 44, 63 | rngsubdir 19754 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) = (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))))) |
65 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝑛 ↑ 𝑋) = (𝑖 ↑ 𝑋)) |
66 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝑇‘(𝑏‘𝑛)) = (𝑇‘(𝑏‘𝑖))) |
67 | 65, 66 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))) = ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) |
68 | 67 | cbvmptv 5183 |
. . . . . . . 8
⊢ (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) |
69 | 68 | oveq2i 7266 |
. . . . . . 7
⊢ (𝑌 Σg
(𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
70 | 69 | oveq2i 7266 |
. . . . . 6
⊢ ((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
71 | 69 | oveq2i 7266 |
. . . . . 6
⊢ ((𝑇‘𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) = ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
72 | 70, 71 | oveq12i 7267 |
. . . . 5
⊢ (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))))) = (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
73 | | cpmadugsum.g |
. . . . . . 7
⊢ + =
(+g‘𝑌) |
74 | 40, 41, 12, 13, 39, 19, 59, 33, 6, 29, 73, 7 | cpmadugsumlemF 21933 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
75 | 74 | anassrs 467 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
76 | 72, 75 | eqtrid 2790 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
77 | 4, 64, 76 | 3eqtrd 2782 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝐼 × (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
78 | 1, 77 | sylan9eqr 2801 |
. 2
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐽‘𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) → (𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
79 | | cpmadugsum.j |
. . . . . . 7
⊢ 𝐽 = (𝑁 maAdju 𝑃) |
80 | 13, 79, 5 | maduf 21698 |
. . . . . 6
⊢ (𝑃 ∈ CRing → 𝐽:(Base‘𝑌)⟶(Base‘𝑌)) |
81 | 23, 80 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝐽:(Base‘𝑌)⟶(Base‘𝑌)) |
82 | 81 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐽:(Base‘𝑌)⟶(Base‘𝑌)) |
83 | 40, 41, 12, 13, 19, 39, 7, 33, 29, 2 | chmatcl 21885 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
84 | 8, 83 | syl3an2 1162 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
85 | 82, 84 | ffvelrnd 6944 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐽‘𝐼) ∈ (Base‘𝑌)) |
86 | 12, 13, 5, 33, 59, 19, 39, 40, 41 | pmatcollpw3fi1 21845 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ (𝐽‘𝐼) ∈ (Base‘𝑌)) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐽‘𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) |
87 | 85, 86 | syld3an3 1407 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐽‘𝐼) = (𝑌 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(𝑏‘𝑛)))))) |
88 | 78, 87 | reximddv2 3206 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |