MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flatcgra Structured version   Visualization version   GIF version

Theorem flatcgra 26604
Description: Flat angles are congruent. (Contributed by Thierry Arnoux, 13-Feb-2023.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
flatcgra.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
flatcgra.2 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
flatcgra.3 (𝜑𝐴𝐵)
flatcgra.4 (𝜑𝐶𝐵)
flatcgra.5 (𝜑𝐷𝐸)
flatcgra.6 (𝜑𝐹𝐸)
Assertion
Ref Expression
flatcgra (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)

Proof of Theorem flatcgra
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgracol.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgracol.m . . . . 5 = (dist‘𝐺)
3 eqid 2821 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgracol.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
8 cgracol.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
10 cgracol.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
12 simpllr 774 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
13 cgracol.e . . . . . 6 (𝜑𝐸𝑃)
1413ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑃)
15 simplr 767 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
16 cgracol.i . . . . . . 7 𝐼 = (Itv‘𝐺)
17 simprlr 778 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐸 𝑥) = (𝐵 𝐴))
181, 2, 16, 5, 14, 12, 9, 7, 17tgcgrcomlr 26260 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 𝐸) = (𝐴 𝐵))
1918eqcomd 2827 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐴 𝐵) = (𝑥 𝐸))
20 simprrr 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐸 𝑦) = (𝐵 𝐶))
2120eqcomd 2827 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑦))
22 cgracol.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2322ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐹𝑃)
24 cgracol.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2524ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
26 flatcgra.6 . . . . . . . . . 10 (𝜑𝐹𝐸)
2726ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐹𝐸)
28 flatcgra.5 . . . . . . . . . 10 (𝜑𝐷𝐸)
2928ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐷𝐸)
30 flatcgra.2 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
311, 2, 16, 4, 24, 13, 22, 30tgbtwncom 26268 . . . . . . . . . 10 (𝜑𝐸 ∈ (𝐹𝐼𝐷))
3231ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐹𝐼𝐷))
33 simprll 777 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐹𝐼𝑥))
34 simprrl 779 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐷𝐼𝑦))
351, 16, 5, 23, 14, 25, 12, 15, 27, 29, 32, 33, 34tgbtwnconn22 26359 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝑥𝐼𝑦))
36 flatcgra.1 . . . . . . . . 9 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3736ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵 ∈ (𝐴𝐼𝐶))
381, 2, 16, 5, 12, 14, 15, 7, 9, 11, 35, 37, 18, 20tgcgrextend 26265 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 𝑦) = (𝐴 𝐶))
3938eqcomd 2827 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐴 𝐶) = (𝑥 𝑦))
401, 2, 16, 5, 7, 11, 12, 15, 39tgcgrcomlr 26260 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐶 𝐴) = (𝑦 𝑥))
411, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 40trgcgr 26296 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
4217eqcomd 2827 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐵 𝐴) = (𝐸 𝑥))
43 flatcgra.3 . . . . . . . . . 10 (𝜑𝐴𝐵)
4443necomd 3071 . . . . . . . . 9 (𝜑𝐵𝐴)
4544ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝐴)
461, 2, 16, 5, 9, 7, 14, 12, 42, 45tgcgrneq 26263 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑥)
4746necomd 3071 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥𝐸)
481, 16, 5, 23, 14, 12, 25, 27, 33, 32tgbtwnconn2 26356 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))
4947, 29, 483jca 1124 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))
50 eqid 2821 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
511, 16, 50, 12, 25, 14, 5ishlg 26382 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥((hlG‘𝐺)‘𝐸)𝐷 ↔ (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))))
5249, 51mpbird 259 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥((hlG‘𝐺)‘𝐸)𝐷)
53 flatcgra.4 . . . . . . . . . 10 (𝜑𝐶𝐵)
5453necomd 3071 . . . . . . . . 9 (𝜑𝐵𝐶)
5554ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
561, 2, 16, 5, 9, 11, 14, 15, 21, 55tgcgrneq 26263 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑦)
5756necomd 3071 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦𝐸)
5830ad3antrrr 728 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐷𝐼𝐹))
591, 16, 5, 25, 14, 15, 23, 29, 34, 58tgbtwnconn2 26356 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))
6057, 27, 593jca 1124 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))
611, 16, 50, 15, 23, 14, 5ishlg 26382 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))))
6260, 61mpbird 259 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦((hlG‘𝐺)‘𝐸)𝐹)
6341, 52, 623jca 1124 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
641, 2, 16, 4, 22, 13, 8, 6axtgsegcon 26244 . . . 4 (𝜑 → ∃𝑥𝑃 (𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)))
651, 2, 16, 4, 24, 13, 8, 10axtgsegcon 26244 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))
66 reeanv 3368 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))) ↔ (∃𝑥𝑃 (𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ ∃𝑦𝑃 (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))))
6764, 65, 66sylanbrc 585 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))))
6863, 67reximddv2 3278 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
691, 16, 50, 4, 6, 8, 10, 24, 13, 22iscgra 26589 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)))
7068, 69mpbird 259 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139   class class class wbr 5059  cfv 6350  (class class class)co 7150  ⟨“cs3 14198  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  cgrGccgrg 26290  hlGchlg 26380  cgrAccgra 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-cgrg 26291  df-hlg 26381  df-cgra 26588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator