MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flatcgra Structured version   Visualization version   GIF version

Theorem flatcgra 28850
Description: Flat angles are congruent. (Contributed by Thierry Arnoux, 13-Feb-2023.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
flatcgra.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
flatcgra.2 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
flatcgra.3 (𝜑𝐴𝐵)
flatcgra.4 (𝜑𝐶𝐵)
flatcgra.5 (𝜑𝐷𝐸)
flatcgra.6 (𝜑𝐹𝐸)
Assertion
Ref Expression
flatcgra (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)

Proof of Theorem flatcgra
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgracol.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgracol.m . . . . 5 = (dist‘𝐺)
3 eqid 2740 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgracol.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐴𝑃)
8 cgracol.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝑃)
10 cgracol.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐶𝑃)
12 simpllr 775 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥𝑃)
13 cgracol.e . . . . . 6 (𝜑𝐸𝑃)
1413ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑃)
15 simplr 768 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦𝑃)
16 cgracol.i . . . . . . 7 𝐼 = (Itv‘𝐺)
17 simprlr 779 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐸 𝑥) = (𝐵 𝐴))
181, 2, 16, 5, 14, 12, 9, 7, 17tgcgrcomlr 28506 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 𝐸) = (𝐴 𝐵))
1918eqcomd 2746 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐴 𝐵) = (𝑥 𝐸))
20 simprrr 781 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐸 𝑦) = (𝐵 𝐶))
2120eqcomd 2746 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑦))
22 cgracol.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2322ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐹𝑃)
24 cgracol.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2524ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐷𝑃)
26 flatcgra.6 . . . . . . . . . 10 (𝜑𝐹𝐸)
2726ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐹𝐸)
28 flatcgra.5 . . . . . . . . . 10 (𝜑𝐷𝐸)
2928ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐷𝐸)
30 flatcgra.2 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
311, 2, 16, 4, 24, 13, 22, 30tgbtwncom 28514 . . . . . . . . . 10 (𝜑𝐸 ∈ (𝐹𝐼𝐷))
3231ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐹𝐼𝐷))
33 simprll 778 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐹𝐼𝑥))
34 simprrl 780 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐷𝐼𝑦))
351, 16, 5, 23, 14, 25, 12, 15, 27, 29, 32, 33, 34tgbtwnconn22 28605 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝑥𝐼𝑦))
36 flatcgra.1 . . . . . . . . 9 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3736ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵 ∈ (𝐴𝐼𝐶))
381, 2, 16, 5, 12, 14, 15, 7, 9, 11, 35, 37, 18, 20tgcgrextend 28511 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 𝑦) = (𝐴 𝐶))
3938eqcomd 2746 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐴 𝐶) = (𝑥 𝑦))
401, 2, 16, 5, 7, 11, 12, 15, 39tgcgrcomlr 28506 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐶 𝐴) = (𝑦 𝑥))
411, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 40trgcgr 28542 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
4217eqcomd 2746 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝐵 𝐴) = (𝐸 𝑥))
43 flatcgra.3 . . . . . . . . . 10 (𝜑𝐴𝐵)
4443necomd 3002 . . . . . . . . 9 (𝜑𝐵𝐴)
4544ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝐴)
461, 2, 16, 5, 9, 7, 14, 12, 42, 45tgcgrneq 28509 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑥)
4746necomd 3002 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥𝐸)
481, 16, 5, 23, 14, 12, 25, 27, 33, 32tgbtwnconn2 28602 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))
4947, 29, 483jca 1128 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))
50 eqid 2740 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
511, 16, 50, 12, 25, 14, 5ishlg 28628 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑥((hlG‘𝐺)‘𝐸)𝐷 ↔ (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))))
5249, 51mpbird 257 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑥((hlG‘𝐺)‘𝐸)𝐷)
53 flatcgra.4 . . . . . . . . . 10 (𝜑𝐶𝐵)
5453necomd 3002 . . . . . . . . 9 (𝜑𝐵𝐶)
5554ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐵𝐶)
561, 2, 16, 5, 9, 11, 14, 15, 21, 55tgcgrneq 28509 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸𝑦)
5756necomd 3002 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦𝐸)
5830ad3antrrr 729 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝐸 ∈ (𝐷𝐼𝐹))
591, 16, 5, 25, 14, 15, 23, 29, 34, 58tgbtwnconn2 28602 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))
6057, 27, 593jca 1128 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))
611, 16, 50, 15, 23, 14, 5ishlg 28628 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (𝑦((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))))
6260, 61mpbird 257 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → 𝑦((hlG‘𝐺)‘𝐸)𝐹)
6341, 52, 623jca 1128 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
641, 2, 16, 4, 22, 13, 8, 6axtgsegcon 28490 . . . 4 (𝜑 → ∃𝑥𝑃 (𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)))
651, 2, 16, 4, 24, 13, 8, 10axtgsegcon 28490 . . . 4 (𝜑 → ∃𝑦𝑃 (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶)))
66 reeanv 3235 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))) ↔ (∃𝑥𝑃 (𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ ∃𝑦𝑃 (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))))
6764, 65, 66sylanbrc 582 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝐸 ∈ (𝐹𝐼𝑥) ∧ (𝐸 𝑥) = (𝐵 𝐴)) ∧ (𝐸 ∈ (𝐷𝐼𝑦) ∧ (𝐸 𝑦) = (𝐵 𝐶))))
6863, 67reximddv2 3221 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
691, 16, 50, 4, 6, 8, 10, 24, 13, 22iscgra 28835 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)))
7068, 69mpbird 257 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  ⟨“cs3 14891  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  cgrGccgrg 28536  hlGchlg 28626  cgrAccgra 28833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-hlg 28627  df-cgra 28834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator