| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltgseg | Structured version Visualization version GIF version | ||
| Description: The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| legval.p | ⊢ 𝑃 = (Base‘𝐺) |
| legval.d | ⊢ − = (dist‘𝐺) |
| legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| legval.l | ⊢ ≤ = (≤G‘𝐺) |
| legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
| legso.f | ⊢ (𝜑 → Fun − ) |
| ltgseg.p | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| ltgseg | ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-4r 783 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = 𝐴) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝑎 = 〈𝑥, 𝑦〉) | |
| 3 | 2 | fveq2d 6862 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = ( − ‘〈𝑥, 𝑦〉)) |
| 4 | 1, 3 | eqtr3d 2766 | . . . 4 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = ( − ‘〈𝑥, 𝑦〉)) |
| 5 | df-ov 7390 | . . . 4 ⊢ (𝑥 − 𝑦) = ( − ‘〈𝑥, 𝑦〉) | |
| 6 | 4, 5 | eqtr4di 2782 | . . 3 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = (𝑥 − 𝑦)) |
| 7 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → 𝑎 ∈ (𝑃 × 𝑃)) | |
| 8 | elxp2 5662 | . . . 4 ⊢ (𝑎 ∈ (𝑃 × 𝑃) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) |
| 10 | 6, 9 | reximddv2 3196 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
| 11 | legso.f | . . 3 ⊢ (𝜑 → Fun − ) | |
| 12 | ltgseg.p | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
| 13 | legso.a | . . . 4 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
| 14 | 12, 13 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( − “ (𝑃 × 𝑃))) |
| 15 | fvelima 6926 | . . 3 ⊢ ((Fun − ∧ 𝐴 ∈ ( − “ (𝑃 × 𝑃))) → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) | |
| 16 | 11, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) |
| 17 | 10, 16 | r19.29a 3141 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4595 × cxp 5636 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 ≤Gcleg 28509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: legso 28526 |
| Copyright terms: Public domain | W3C validator |