MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgseg Structured version   Visualization version   GIF version

Theorem ltgseg 28572
Description: The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
ltgseg.p (𝜑𝐴𝐸)
Assertion
Ref Expression
ltgseg (𝜑 → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐴,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐼(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ltgseg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . . 5 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → ( 𝑎) = 𝐴)
2 simpr 484 . . . . . 6 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝑎 = ⟨𝑥, 𝑦⟩)
32fveq2d 6826 . . . . 5 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → ( 𝑎) = ( ‘⟨𝑥, 𝑦⟩))
41, 3eqtr3d 2768 . . . 4 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝐴 = ( ‘⟨𝑥, 𝑦⟩))
5 df-ov 7349 . . . 4 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
64, 5eqtr4di 2784 . . 3 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝐴 = (𝑥 𝑦))
7 simplr 768 . . . 4 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → 𝑎 ∈ (𝑃 × 𝑃))
8 elxp2 5640 . . . 4 (𝑎 ∈ (𝑃 × 𝑃) ↔ ∃𝑥𝑃𝑦𝑃 𝑎 = ⟨𝑥, 𝑦⟩)
97, 8sylib 218 . . 3 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → ∃𝑥𝑃𝑦𝑃 𝑎 = ⟨𝑥, 𝑦⟩)
106, 9reximddv2 3191 . 2 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
11 legso.f . . 3 (𝜑 → Fun )
12 ltgseg.p . . . 4 (𝜑𝐴𝐸)
13 legso.a . . . 4 𝐸 = ( “ (𝑃 × 𝑃))
1412, 13eleqtrdi 2841 . . 3 (𝜑𝐴 ∈ ( “ (𝑃 × 𝑃)))
15 fvelima 6887 . . 3 ((Fun 𝐴 ∈ ( “ (𝑃 × 𝑃))) → ∃𝑎 ∈ (𝑃 × 𝑃)( 𝑎) = 𝐴)
1611, 14, 15syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (𝑃 × 𝑃)( 𝑎) = 𝐴)
1710, 16r19.29a 3140 1 (𝜑 → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cop 4582   × cxp 5614  cima 5619  Fun wfun 6475  cfv 6481  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409  ≤Gcleg 28558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349
This theorem is referenced by:  legso  28575
  Copyright terms: Public domain W3C validator