![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltgseg | Structured version Visualization version GIF version |
Description: The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
ltgseg.p | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
Ref | Expression |
---|---|
ltgseg | ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp-4r 774 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = 𝐴) | |
2 | simpr 479 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝑎 = 〈𝑥, 𝑦〉) | |
3 | 2 | fveq2d 6450 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = ( − ‘〈𝑥, 𝑦〉)) |
4 | 1, 3 | eqtr3d 2815 | . . . 4 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = ( − ‘〈𝑥, 𝑦〉)) |
5 | df-ov 6925 | . . . 4 ⊢ (𝑥 − 𝑦) = ( − ‘〈𝑥, 𝑦〉) | |
6 | 4, 5 | syl6eqr 2831 | . . 3 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = (𝑥 − 𝑦)) |
7 | simplr 759 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → 𝑎 ∈ (𝑃 × 𝑃)) | |
8 | elxp2 5379 | . . . 4 ⊢ (𝑎 ∈ (𝑃 × 𝑃) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) | |
9 | 7, 8 | sylib 210 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) |
10 | 6, 9 | reximddv2 3201 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
11 | legso.f | . . 3 ⊢ (𝜑 → Fun − ) | |
12 | ltgseg.p | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
13 | legso.a | . . . 4 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
14 | 12, 13 | syl6eleq 2868 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( − “ (𝑃 × 𝑃))) |
15 | fvelima 6508 | . . 3 ⊢ ((Fun − ∧ 𝐴 ∈ ( − “ (𝑃 × 𝑃))) → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) | |
16 | 11, 14, 15 | syl2anc 579 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) |
17 | 10, 16 | r19.29a 3263 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∃wrex 3090 〈cop 4403 × cxp 5353 “ cima 5358 Fun wfun 6129 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 distcds 16347 TarskiGcstrkg 25781 Itvcitv 25787 ≤Gcleg 25933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 |
This theorem is referenced by: legso 25950 |
Copyright terms: Public domain | W3C validator |