Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltgseg | Structured version Visualization version GIF version |
Description: The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
legval.p | ⊢ 𝑃 = (Base‘𝐺) |
legval.d | ⊢ − = (dist‘𝐺) |
legval.i | ⊢ 𝐼 = (Itv‘𝐺) |
legval.l | ⊢ ≤ = (≤G‘𝐺) |
legval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
legso.a | ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) |
legso.f | ⊢ (𝜑 → Fun − ) |
ltgseg.p | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
Ref | Expression |
---|---|
ltgseg | ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp-4r 780 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = 𝐴) | |
2 | simpr 484 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝑎 = 〈𝑥, 𝑦〉) | |
3 | 2 | fveq2d 6772 | . . . . 5 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → ( − ‘𝑎) = ( − ‘〈𝑥, 𝑦〉)) |
4 | 1, 3 | eqtr3d 2781 | . . . 4 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = ( − ‘〈𝑥, 𝑦〉)) |
5 | df-ov 7271 | . . . 4 ⊢ (𝑥 − 𝑦) = ( − ‘〈𝑥, 𝑦〉) | |
6 | 4, 5 | eqtr4di 2797 | . . 3 ⊢ ((((((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ 𝑎 = 〈𝑥, 𝑦〉) → 𝐴 = (𝑥 − 𝑦)) |
7 | simplr 765 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → 𝑎 ∈ (𝑃 × 𝑃)) | |
8 | elxp2 5612 | . . . 4 ⊢ (𝑎 ∈ (𝑃 × 𝑃) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝑎 = 〈𝑥, 𝑦〉) |
10 | 6, 9 | reximddv2 3208 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ (𝑃 × 𝑃)) ∧ ( − ‘𝑎) = 𝐴) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
11 | legso.f | . . 3 ⊢ (𝜑 → Fun − ) | |
12 | ltgseg.p | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
13 | legso.a | . . . 4 ⊢ 𝐸 = ( − “ (𝑃 × 𝑃)) | |
14 | 12, 13 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( − “ (𝑃 × 𝑃))) |
15 | fvelima 6829 | . . 3 ⊢ ((Fun − ∧ 𝐴 ∈ ( − “ (𝑃 × 𝑃))) → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) | |
16 | 11, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝑃 × 𝑃)( − ‘𝑎) = 𝐴) |
17 | 10, 16 | r19.29a 3219 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 𝐴 = (𝑥 − 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 〈cop 4572 × cxp 5586 “ cima 5591 Fun wfun 6424 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 distcds 16952 TarskiGcstrkg 26769 Itvcitv 26775 ≤Gcleg 26924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 |
This theorem is referenced by: legso 26941 |
Copyright terms: Public domain | W3C validator |