MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgseg Structured version   Visualization version   GIF version

Theorem ltgseg 26938
Description: The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
ltgseg.p (𝜑𝐴𝐸)
Assertion
Ref Expression
ltgseg (𝜑 → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐴,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐼(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ltgseg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp-4r 780 . . . . 5 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → ( 𝑎) = 𝐴)
2 simpr 484 . . . . . 6 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝑎 = ⟨𝑥, 𝑦⟩)
32fveq2d 6772 . . . . 5 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → ( 𝑎) = ( ‘⟨𝑥, 𝑦⟩))
41, 3eqtr3d 2781 . . . 4 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝐴 = ( ‘⟨𝑥, 𝑦⟩))
5 df-ov 7271 . . . 4 (𝑥 𝑦) = ( ‘⟨𝑥, 𝑦⟩)
64, 5eqtr4di 2797 . . 3 ((((((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = ⟨𝑥, 𝑦⟩) → 𝐴 = (𝑥 𝑦))
7 simplr 765 . . . 4 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → 𝑎 ∈ (𝑃 × 𝑃))
8 elxp2 5612 . . . 4 (𝑎 ∈ (𝑃 × 𝑃) ↔ ∃𝑥𝑃𝑦𝑃 𝑎 = ⟨𝑥, 𝑦⟩)
97, 8sylib 217 . . 3 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → ∃𝑥𝑃𝑦𝑃 𝑎 = ⟨𝑥, 𝑦⟩)
106, 9reximddv2 3208 . 2 (((𝜑𝑎 ∈ (𝑃 × 𝑃)) ∧ ( 𝑎) = 𝐴) → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
11 legso.f . . 3 (𝜑 → Fun )
12 ltgseg.p . . . 4 (𝜑𝐴𝐸)
13 legso.a . . . 4 𝐸 = ( “ (𝑃 × 𝑃))
1412, 13eleqtrdi 2850 . . 3 (𝜑𝐴 ∈ ( “ (𝑃 × 𝑃)))
15 fvelima 6829 . . 3 ((Fun 𝐴 ∈ ( “ (𝑃 × 𝑃))) → ∃𝑎 ∈ (𝑃 × 𝑃)( 𝑎) = 𝐴)
1611, 14, 15syl2anc 583 . 2 (𝜑 → ∃𝑎 ∈ (𝑃 × 𝑃)( 𝑎) = 𝐴)
1710, 16r19.29a 3219 1 (𝜑 → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066  cop 4572   × cxp 5586  cima 5591  Fun wfun 6424  cfv 6430  (class class class)co 7268  Basecbs 16893  distcds 16952  TarskiGcstrkg 26769  Itvcitv 26775  ≤Gcleg 26924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271
This theorem is referenced by:  legso  26941
  Copyright terms: Public domain W3C validator