| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidg2sum | Structured version Visualization version GIF version | ||
| Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmadugsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmadugsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmadugsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmadugsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmadugsum.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmadugsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmadugsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmadugsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmadugsum.r | ⊢ × = (.r‘𝑌) |
| cpmadugsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmadugsum.g | ⊢ + = (+g‘𝑌) |
| cpmadugsum.s | ⊢ − = (-g‘𝑌) |
| cpmadugsum.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
| cpmadugsum.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
| cpmadugsum.0 | ⊢ 0 = (0g‘𝑌) |
| cpmadugsum.g2 | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| cpmidgsum2.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum2.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidg2sum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| cpmidg2sum | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmadugsum.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cpmadugsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cpmadugsum.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | cpmadugsum.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 5 | cpmadugsum.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 6 | cpmadugsum.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 7 | cpmadugsum.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 8 | cpmadugsum.1 | . . . . . 6 ⊢ 1 = (1r‘𝑌) | |
| 9 | cpmidg2sum.u | . . . . . 6 ⊢ 𝑈 = (algSc‘𝑃) | |
| 10 | cpmidgsum2.c | . . . . . 6 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 11 | cpmidgsum2.k | . . . . . 6 ⊢ 𝐾 = (𝐶‘𝑀) | |
| 12 | eqid 2736 | . . . . . 6 ⊢ (𝐾 · 1 ) = (𝐾 · 1 ) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cpmidgsum 22811 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 ))))) |
| 14 | 13 | eqcomd 2742 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
| 15 | 14 | ad3antrrr 730 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
| 16 | simpr 484 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | |
| 17 | 15, 16 | eqtrd 2771 | . 2 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| 18 | cpmadugsum.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 19 | cpmadugsum.r | . . 3 ⊢ × = (.r‘𝑌) | |
| 20 | cpmadugsum.g | . . 3 ⊢ + = (+g‘𝑌) | |
| 21 | cpmadugsum.s | . . 3 ⊢ − = (-g‘𝑌) | |
| 22 | cpmadugsum.i | . . 3 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
| 23 | cpmadugsum.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
| 24 | cpmadugsum.0 | . . 3 ⊢ 0 = (0g‘𝑌) | |
| 25 | cpmadugsum.g2 | . . 3 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 26 | 1, 2, 3, 4, 18, 5, 6, 7, 19, 8, 20, 21, 22, 23, 24, 25, 10, 11, 12 | cpmidgsum2 22822 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| 27 | 17, 26 | reximddv2 3204 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ifcif 4505 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Fincfn 8964 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 ·𝑠 cvsca 17280 0gc0g 17458 Σg cgsu 17459 -gcsg 18923 .gcmg 19055 mulGrpcmgp 20105 1rcur 20146 CRingccrg 20199 algSccascl 21817 var1cv1 22116 Poly1cpl1 22117 coe1cco1 22118 Mat cmat 22350 maAdju cmadu 22575 matToPolyMat cmat2pmat 22647 CharPlyMat cchpmat 22769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-cur 8271 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-reverse 14782 df-s2 14872 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-cntz 19305 df-oppg 19334 df-symg 19356 df-pmtr 19428 df-psgn 19477 df-evpm 19478 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-lmod 20824 df-lss 20894 df-sra 21136 df-rgmod 21137 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-dsmm 21697 df-frlm 21712 df-assa 21818 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-mamu 22334 df-mat 22351 df-mdet 22528 df-madu 22577 df-mat2pmat 22650 df-decpmat 22706 df-chpmat 22770 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |