| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmidg2sum | Structured version Visualization version GIF version | ||
| Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmadugsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmadugsum.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmadugsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmadugsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmadugsum.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmadugsum.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmadugsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| cpmadugsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmadugsum.r | ⊢ × = (.r‘𝑌) |
| cpmadugsum.1 | ⊢ 1 = (1r‘𝑌) |
| cpmadugsum.g | ⊢ + = (+g‘𝑌) |
| cpmadugsum.s | ⊢ − = (-g‘𝑌) |
| cpmadugsum.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
| cpmadugsum.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
| cpmadugsum.0 | ⊢ 0 = (0g‘𝑌) |
| cpmadugsum.g2 | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
| cpmidgsum2.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmidgsum2.k | ⊢ 𝐾 = (𝐶‘𝑀) |
| cpmidg2sum.u | ⊢ 𝑈 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| cpmidg2sum | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmadugsum.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cpmadugsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cpmadugsum.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | cpmadugsum.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 5 | cpmadugsum.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 6 | cpmadugsum.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 7 | cpmadugsum.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 8 | cpmadugsum.1 | . . . . . 6 ⊢ 1 = (1r‘𝑌) | |
| 9 | cpmidg2sum.u | . . . . . 6 ⊢ 𝑈 = (algSc‘𝑃) | |
| 10 | cpmidgsum2.c | . . . . . 6 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 11 | cpmidgsum2.k | . . . . . 6 ⊢ 𝐾 = (𝐶‘𝑀) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (𝐾 · 1 ) = (𝐾 · 1 ) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cpmidgsum 22771 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 ))))) |
| 14 | 13 | eqcomd 2735 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
| 15 | 14 | ad3antrrr 730 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
| 16 | simpr 484 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | |
| 17 | 15, 16 | eqtrd 2764 | . 2 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| 18 | cpmadugsum.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 19 | cpmadugsum.r | . . 3 ⊢ × = (.r‘𝑌) | |
| 20 | cpmadugsum.g | . . 3 ⊢ + = (+g‘𝑌) | |
| 21 | cpmadugsum.s | . . 3 ⊢ − = (-g‘𝑌) | |
| 22 | cpmadugsum.i | . . 3 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
| 23 | cpmadugsum.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
| 24 | cpmadugsum.0 | . . 3 ⊢ 0 = (0g‘𝑌) | |
| 25 | cpmadugsum.g2 | . . 3 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
| 26 | 1, 2, 3, 4, 18, 5, 6, 7, 19, 8, 20, 21, 22, 23, 24, 25, 10, 11, 12 | cpmidgsum2 22782 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| 27 | 17, 26 | reximddv2 3188 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 − cmin 11365 ℕcn 12146 ℕ0cn0 12402 ...cfz 13428 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 ·𝑠 cvsca 17183 0gc0g 17361 Σg cgsu 17362 -gcsg 18832 .gcmg 18964 mulGrpcmgp 20043 1rcur 20084 CRingccrg 20137 algSccascl 21777 var1cv1 22076 Poly1cpl1 22077 coe1cco1 22078 Mat cmat 22310 maAdju cmadu 22535 matToPolyMat cmat2pmat 22607 CharPlyMat cchpmat 22729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-cur 8207 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 df-evpm 19389 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lss 20853 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-dsmm 21657 df-frlm 21672 df-assa 21778 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-mamu 22294 df-mat 22311 df-mdet 22488 df-madu 22537 df-mat2pmat 22610 df-decpmat 22666 df-chpmat 22730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |