Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmidg2sum | Structured version Visualization version GIF version |
Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) |
Ref | Expression |
---|---|
cpmadugsum.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadugsum.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadugsum.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadugsum.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadugsum.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadugsum.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmadugsum.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
cpmadugsum.m | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadugsum.r | ⊢ × = (.r‘𝑌) |
cpmadugsum.1 | ⊢ 1 = (1r‘𝑌) |
cpmadugsum.g | ⊢ + = (+g‘𝑌) |
cpmadugsum.s | ⊢ − = (-g‘𝑌) |
cpmadugsum.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
cpmadugsum.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadugsum.0 | ⊢ 0 = (0g‘𝑌) |
cpmadugsum.g2 | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
cpmidgsum2.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmidgsum2.k | ⊢ 𝐾 = (𝐶‘𝑀) |
cpmidg2sum.u | ⊢ 𝑈 = (algSc‘𝑃) |
Ref | Expression |
---|---|
cpmidg2sum | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmadugsum.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cpmadugsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cpmadugsum.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | cpmadugsum.y | . . . . . 6 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
5 | cpmadugsum.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
6 | cpmadugsum.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
7 | cpmadugsum.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑌) | |
8 | cpmadugsum.1 | . . . . . 6 ⊢ 1 = (1r‘𝑌) | |
9 | cpmidg2sum.u | . . . . . 6 ⊢ 𝑈 = (algSc‘𝑃) | |
10 | cpmidgsum2.c | . . . . . 6 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
11 | cpmidgsum2.k | . . . . . 6 ⊢ 𝐾 = (𝐶‘𝑀) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝐾 · 1 ) = (𝐾 · 1 ) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cpmidgsum 21925 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 ))))) |
14 | 13 | eqcomd 2744 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
15 | 14 | ad3antrrr 726 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝐾 · 1 )) |
16 | simpr 484 | . . 3 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | |
17 | 15, 16 | eqtrd 2778 | . 2 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ (𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
18 | cpmadugsum.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
19 | cpmadugsum.r | . . 3 ⊢ × = (.r‘𝑌) | |
20 | cpmadugsum.g | . . 3 ⊢ + = (+g‘𝑌) | |
21 | cpmadugsum.s | . . 3 ⊢ − = (-g‘𝑌) | |
22 | cpmadugsum.i | . . 3 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
23 | cpmadugsum.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
24 | cpmadugsum.0 | . . 3 ⊢ 0 = (0g‘𝑌) | |
25 | cpmadugsum.g2 | . . 3 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | |
26 | 1, 2, 3, 4, 18, 5, 6, 7, 19, 8, 20, 21, 22, 23, 24, 25, 10, 11, 12 | cpmidgsum2 21936 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐾 · 1 ) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
27 | 17, 26 | reximddv2 3206 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ...cfz 13168 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 ·𝑠 cvsca 16892 0gc0g 17067 Σg cgsu 17068 -gcsg 18494 .gcmg 18615 mulGrpcmgp 19635 1rcur 19652 CRingccrg 19699 algSccascl 20969 var1cv1 21257 Poly1cpl1 21258 coe1cco1 21259 Mat cmat 21464 maAdju cmadu 21689 matToPolyMat cmat2pmat 21761 CharPlyMat cchpmat 21883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-cur 8054 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-evpm 19015 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-dsmm 20849 df-frlm 20864 df-assa 20970 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 df-mamu 21443 df-mat 21465 df-mdet 21642 df-madu 21691 df-mat2pmat 21764 df-decpmat 21820 df-chpmat 21884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |