MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgratr Structured version   Visualization version   GIF version

Theorem cgratr 26611
Description: Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgracom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgratr.h (𝜑𝐻𝑃)
cgratr.i (𝜑𝑈𝑃)
cgratr.j (𝜑𝐽𝑃)
cgratr.1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
Assertion
Ref Expression
cgratr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)

Proof of Theorem cgratr
Dummy variables 𝑥 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2823 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2823 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
8 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
10 cgraid.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
12 simpllr 774 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
13 cgratr.i . . . . . 6 (𝜑𝑈𝑃)
1413ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑈𝑃)
15 simplr 767 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
16 cgraid.i . . . . . 6 𝐼 = (Itv‘𝐺)
17 simprlr 778 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
1817eqcomd 2829 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 26268 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝑈))
20 simprrr 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
2120eqcomd 2829 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
225ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
237ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐴𝑃)
249ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐵𝑃)
2511ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐶𝑃)
26 simpllr 774 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢𝑃)
27 cgracom.e . . . . . . . . 9 (𝜑𝐸𝑃)
2827ad6antr 734 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐸𝑃)
29 simplr 767 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣𝑃)
30 simpr1 1190 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩)
311, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp3 26310 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑣(dist‘𝐺)𝑢))
3212ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥𝑃)
3315ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦𝑃)
34 cgraid.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
35 cgracom.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3635ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐷𝑃)
37 cgracom.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3837ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐹𝑃)
3914ad3antrrr 728 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑈𝑃)
40 cgratr.j . . . . . . . . . . 11 (𝜑𝐽𝑃)
4140ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐽𝑃)
42 cgratr.h . . . . . . . . . . . 12 (𝜑𝐻𝑃)
4342ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐻𝑃)
44 cgratr.1 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
4544ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
46 simprll 777 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝑈)𝐻)
4746ad3antrrr 728 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥(𝐾𝑈)𝐻)
481, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47cgrahl1 26604 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝐽”⟩)
49 simprrl 779 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝑈)𝐽)
5049ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦(𝐾𝑈)𝐽)
511, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50cgrahl2 26605 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝑦”⟩)
52 simpr2 1191 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢(𝐾𝐸)𝐷)
53 simpr3 1192 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣(𝐾𝐸)𝐹)
541, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp1 26308 . . . . . . . . . . . 12 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐴(dist‘𝐺)𝐵) = (𝑢(dist‘𝐺)𝐸))
5554eqcomd 2829 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝐸) = (𝐴(dist‘𝐺)𝐵))
561, 2, 16, 22, 26, 28, 23, 24, 55tgcgrcomlr 26268 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝐵(dist‘𝐺)𝐴))
5718ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
5856, 57eqtrd 2858 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝑈(dist‘𝐺)𝑥))
591, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp2 26309 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝑣))
6021ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
6159, 60eqtr3d 2860 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝑈(dist‘𝐺)𝑦))
621, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 61cgracgr 26606 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝑣) = (𝑥(dist‘𝐺)𝑦))
631, 2, 16, 22, 26, 29, 32, 33, 62tgcgrcomlr 26268 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑣(dist‘𝐺)𝑢) = (𝑦(dist‘𝐺)𝑥))
6431, 63eqtrd 2858 . . . . . 6 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
65 cgracom.1 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
661, 16, 34, 4, 6, 8, 10, 35, 27, 37iscgra 26597 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)))
6765, 66mpbid 234 . . . . . . 7 (𝜑 → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
6867ad3antrrr 728 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
6964, 68r19.29vva 3338 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
701, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 69trgcgr 26304 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩)
7170, 46, 493jca 1124 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
721, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane3 26602 . . . . . 6 (𝜑𝑈𝐻)
7372necomd 3073 . . . . 5 (𝜑𝐻𝑈)
741, 16, 34, 4, 6, 8, 10, 35, 27, 37, 65cgrane1 26600 . . . . . 6 (𝜑𝐴𝐵)
7574necomd 3073 . . . . 5 (𝜑𝐵𝐴)
761, 16, 34, 13, 8, 6, 4, 42, 2, 73, 75hlcgrex 26404 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
771, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane4 26603 . . . . . 6 (𝜑𝑈𝐽)
7877necomd 3073 . . . . 5 (𝜑𝐽𝑈)
791, 16, 34, 4, 6, 8, 10, 35, 27, 37, 65cgrane2 26601 . . . . 5 (𝜑𝐵𝐶)
801, 16, 34, 13, 8, 10, 4, 40, 2, 78, 79hlcgrex 26404 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
81 reeanv 3369 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8276, 80, 81sylanbrc 585 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8371, 82reximddv2 3280 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
841, 16, 34, 4, 6, 8, 10, 42, 13, 40iscgra 26597 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽)))
8583, 84mpbird 259 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  ⟨“cs3 14206  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  cgrGccgrg 26298  hlGchlg 26388  cgrAccgra 26595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-cgrg 26299  df-leg 26371  df-hlg 26389  df-cgra 26596
This theorem is referenced by:  cgraswaplr  26613  sacgr  26619  oacgr  26620  tgasa1  26646
  Copyright terms: Public domain W3C validator