| Step | Hyp | Ref
| Expression |
| 1 | | cgraid.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | eqid 2737 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
| 4 | | cgraid.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG) |
| 6 | | cgraid.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 7 | 6 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴 ∈ 𝑃) |
| 8 | | cgraid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 9 | 8 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵 ∈ 𝑃) |
| 10 | | cgraid.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 11 | 10 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶 ∈ 𝑃) |
| 12 | | simpllr 776 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ 𝑃) |
| 13 | | cgratr.i |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑃) |
| 14 | 13 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑈 ∈ 𝑃) |
| 15 | | simplr 769 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦 ∈ 𝑃) |
| 16 | | cgraid.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
| 17 | | simprlr 780 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) |
| 18 | 17 | eqcomd 2743 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥)) |
| 19 | 1, 2, 16, 5, 9, 7,
14, 12, 18 | tgcgrcomlr 28488 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝑈)) |
| 20 | | simprrr 782 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)) |
| 21 | 20 | eqcomd 2743 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦)) |
| 22 | 5 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
| 23 | 7 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐴 ∈ 𝑃) |
| 24 | 9 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
| 25 | 11 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
| 26 | | simpllr 776 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑢 ∈ 𝑃) |
| 27 | | cgracom.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 28 | 27 | ad6antr 736 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
| 29 | | simplr 769 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑣 ∈ 𝑃) |
| 30 | | simpr1 1195 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉) |
| 31 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp3 28530 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑣(dist‘𝐺)𝑢)) |
| 32 | 12 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
| 33 | 15 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
| 34 | | cgraid.k |
. . . . . . . . 9
⊢ 𝐾 = (hlG‘𝐺) |
| 35 | | cgracom.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 36 | 35 | ad6antr 736 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
| 37 | | cgracom.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 38 | 37 | ad6antr 736 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
| 39 | 14 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑈 ∈ 𝑃) |
| 40 | | cgratr.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑃) |
| 41 | 40 | ad6antr 736 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐽 ∈ 𝑃) |
| 42 | | cgratr.h |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ 𝑃) |
| 43 | 42 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐻 ∈ 𝑃) |
| 44 | | cgratr.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |
| 45 | 44 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |
| 46 | | simprll 779 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾‘𝑈)𝐻) |
| 47 | 46 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑥(𝐾‘𝑈)𝐻) |
| 48 | 1, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47 | cgrahl1 28824 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝑥𝑈𝐽”〉) |
| 49 | | simprrl 781 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾‘𝑈)𝐽) |
| 50 | 49 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝑈)𝐽) |
| 51 | 1, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50 | cgrahl2 28825 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝑥𝑈𝑦”〉) |
| 52 | | simpr2 1196 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑢(𝐾‘𝐸)𝐷) |
| 53 | | simpr3 1197 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑣(𝐾‘𝐸)𝐹) |
| 54 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp1 28528 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐴(dist‘𝐺)𝐵) = (𝑢(dist‘𝐺)𝐸)) |
| 55 | 54 | eqcomd 2743 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑢(dist‘𝐺)𝐸) = (𝐴(dist‘𝐺)𝐵)) |
| 56 | 1, 2, 16, 22, 26, 28, 23, 24, 55 | tgcgrcomlr 28488 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝐵(dist‘𝐺)𝐴)) |
| 57 | 18 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥)) |
| 58 | 56, 57 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝑈(dist‘𝐺)𝑥)) |
| 59 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp2 28529 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝑣)) |
| 60 | 21 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦)) |
| 61 | 59, 60 | eqtr3d 2779 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝑈(dist‘𝐺)𝑦)) |
| 62 | 1, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 61 | cgracgr 28826 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑢(dist‘𝐺)𝑣) = (𝑥(dist‘𝐺)𝑦)) |
| 63 | 1, 2, 16, 22, 26, 29, 32, 33, 62 | tgcgrcomlr 28488 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑣(dist‘𝐺)𝑢) = (𝑦(dist‘𝐺)𝑥)) |
| 64 | 31, 63 | eqtrd 2777 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)) |
| 65 | | cgracom.1 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 66 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37 | iscgra 28817 |
. . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹))) |
| 67 | 65, 66 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) |
| 68 | 67 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) |
| 69 | 64, 68 | r19.29vva 3216 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)) |
| 70 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 69 | trgcgr 28524 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉) |
| 71 | 70, 46, 49 | 3jca 1129 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽)) |
| 72 | 1, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44 | cgrane3 28822 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ 𝐻) |
| 73 | 72 | necomd 2996 |
. . . . 5
⊢ (𝜑 → 𝐻 ≠ 𝑈) |
| 74 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37, 65 | cgrane1 28820 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 75 | 74 | necomd 2996 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 76 | 1, 16, 34, 13, 8, 6, 4, 42, 2,
73, 75 | hlcgrex 28624 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))) |
| 77 | 1, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44 | cgrane4 28823 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ 𝐽) |
| 78 | 77 | necomd 2996 |
. . . . 5
⊢ (𝜑 → 𝐽 ≠ 𝑈) |
| 79 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37, 65 | cgrane2 28821 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 80 | 1, 16, 34, 13, 8, 10, 4, 40, 2, 78, 79 | hlcgrex 28624 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) |
| 81 | | reeanv 3229 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
| 82 | 76, 80, 81 | sylanbrc 583 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
| 83 | 71, 82 | reximddv2 3215 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽)) |
| 84 | 1, 16, 34, 4, 6, 8,
10, 42, 13, 40 | iscgra 28817 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽))) |
| 85 | 83, 84 | mpbird 257 |
1
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |