Step | Hyp | Ref
| Expression |
1 | | cgraid.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | eqid 2738 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
3 | | eqid 2738 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
4 | | cgraid.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG) |
6 | | cgraid.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴 ∈ 𝑃) |
8 | | cgraid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵 ∈ 𝑃) |
10 | | cgraid.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
11 | 10 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶 ∈ 𝑃) |
12 | | simpllr 772 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥 ∈ 𝑃) |
13 | | cgratr.i |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑃) |
14 | 13 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑈 ∈ 𝑃) |
15 | | simplr 765 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦 ∈ 𝑃) |
16 | | cgraid.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
17 | | simprlr 776 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) |
18 | 17 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥)) |
19 | 1, 2, 16, 5, 9, 7,
14, 12, 18 | tgcgrcomlr 26745 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝑈)) |
20 | | simprrr 778 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)) |
21 | 20 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦)) |
22 | 5 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
23 | 7 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐴 ∈ 𝑃) |
24 | 9 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
25 | 11 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
26 | | simpllr 772 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑢 ∈ 𝑃) |
27 | | cgracom.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
28 | 27 | ad6antr 732 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
29 | | simplr 765 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑣 ∈ 𝑃) |
30 | | simpr1 1192 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉) |
31 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp3 26787 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑣(dist‘𝐺)𝑢)) |
32 | 12 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
33 | 15 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
34 | | cgraid.k |
. . . . . . . . 9
⊢ 𝐾 = (hlG‘𝐺) |
35 | | cgracom.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
36 | 35 | ad6antr 732 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
37 | | cgracom.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
38 | 37 | ad6antr 732 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
39 | 14 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑈 ∈ 𝑃) |
40 | | cgratr.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑃) |
41 | 40 | ad6antr 732 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐽 ∈ 𝑃) |
42 | | cgratr.h |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ 𝑃) |
43 | 42 | ad6antr 732 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝐻 ∈ 𝑃) |
44 | | cgratr.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |
45 | 44 | ad6antr 732 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |
46 | | simprll 775 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾‘𝑈)𝐻) |
47 | 46 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑥(𝐾‘𝑈)𝐻) |
48 | 1, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47 | cgrahl1 27081 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝑥𝑈𝐽”〉) |
49 | | simprrl 777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾‘𝑈)𝐽) |
50 | 49 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝑈)𝐽) |
51 | 1, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50 | cgrahl2 27082 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 〈“𝐷𝐸𝐹”〉(cgrA‘𝐺)〈“𝑥𝑈𝑦”〉) |
52 | | simpr2 1193 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑢(𝐾‘𝐸)𝐷) |
53 | | simpr3 1194 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → 𝑣(𝐾‘𝐸)𝐹) |
54 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp1 26785 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐴(dist‘𝐺)𝐵) = (𝑢(dist‘𝐺)𝐸)) |
55 | 54 | eqcomd 2744 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑢(dist‘𝐺)𝐸) = (𝐴(dist‘𝐺)𝐵)) |
56 | 1, 2, 16, 22, 26, 28, 23, 24, 55 | tgcgrcomlr 26745 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝐵(dist‘𝐺)𝐴)) |
57 | 18 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥)) |
58 | 56, 57 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝑈(dist‘𝐺)𝑥)) |
59 | 1, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30 | cgr3simp2 26786 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝑣)) |
60 | 21 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦)) |
61 | 59, 60 | eqtr3d 2780 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝑈(dist‘𝐺)𝑦)) |
62 | 1, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 61 | cgracgr 27083 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑢(dist‘𝐺)𝑣) = (𝑥(dist‘𝐺)𝑦)) |
63 | 1, 2, 16, 22, 26, 29, 32, 33, 62 | tgcgrcomlr 26745 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝑣(dist‘𝐺)𝑢) = (𝑦(dist‘𝐺)𝑥)) |
64 | 31, 63 | eqtrd 2778 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)) |
65 | | cgracom.1 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
66 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37 | iscgra 27074 |
. . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹))) |
67 | 65, 66 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) |
68 | 67 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑢𝐸𝑣”〉 ∧ 𝑢(𝐾‘𝐸)𝐷 ∧ 𝑣(𝐾‘𝐸)𝐹)) |
69 | 64, 68 | r19.29vva 3263 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥)) |
70 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 69 | trgcgr 26781 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉) |
71 | 70, 46, 49 | 3jca 1126 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽)) |
72 | 1, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44 | cgrane3 27079 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ 𝐻) |
73 | 72 | necomd 2998 |
. . . . 5
⊢ (𝜑 → 𝐻 ≠ 𝑈) |
74 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37, 65 | cgrane1 27077 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
75 | 74 | necomd 2998 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
76 | 1, 16, 34, 13, 8, 6, 4, 42, 2,
73, 75 | hlcgrex 26881 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))) |
77 | 1, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44 | cgrane4 27080 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ 𝐽) |
78 | 77 | necomd 2998 |
. . . . 5
⊢ (𝜑 → 𝐽 ≠ 𝑈) |
79 | 1, 16, 34, 4, 6, 8,
10, 35, 27, 37, 65 | cgrane2 27078 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
80 | 1, 16, 34, 13, 8, 10, 4, 40, 2, 78, 79 | hlcgrex 26881 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) |
81 | | reeanv 3292 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥 ∈ 𝑃 (𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦 ∈ 𝑃 (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
82 | 76, 80, 81 | sylanbrc 582 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((𝑥(𝐾‘𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾‘𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) |
83 | 71, 82 | reximddv2 3206 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽)) |
84 | 1, 16, 34, 4, 6, 8,
10, 42, 13, 40 | iscgra 27074 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝑈𝑦”〉 ∧ 𝑥(𝐾‘𝑈)𝐻 ∧ 𝑦(𝐾‘𝑈)𝐽))) |
85 | 83, 84 | mpbird 256 |
1
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐻𝑈𝐽”〉) |