MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgra2 Structured version   Visualization version   GIF version

Theorem dfcgra2 27191
Description: This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 27169 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
Assertion
Ref Expression
dfcgra2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Distinct variable groups:   ,𝑎,𝑐,𝑑,𝑓   𝐴,𝑎,𝑐,𝑑,𝑓   𝐵,𝑎,𝑐,𝑑,𝑓   𝐶,𝑎,𝑐,𝑑,𝑓   𝐷,𝑎,𝑐,𝑑,𝑓   𝐸,𝑎,𝑐,𝑑,𝑓   𝐹,𝑎,𝑐,𝑑,𝑓   𝐺,𝑎,𝑐,𝑑,𝑓   𝐼,𝑎,𝑐,𝑑,𝑓   𝑃,𝑎,𝑐,𝑑,𝑓   𝜑,𝑎,𝑐,𝑑,𝑓

Proof of Theorem dfcgra2
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . . 5 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 eqid 2738 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgra2.a . . . . . 6 (𝜑𝐴𝑃)
76adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgra2.b . . . . . 6 (𝜑𝐵𝑃)
98adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgra2.c . . . . . 6 (𝜑𝐶𝑃)
1110adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
1312adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgra2.f . . . . . 6 (𝜑𝐹𝑃)
1716adantr 481 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 simpr 485 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
191, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane1 27173 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane2 27174 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
2120necomd 2999 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐵)
2219, 21jca 512 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴𝐵𝐶𝐵))
231, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane3 27175 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐷)
2423necomd 2999 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝐸)
251, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane4 27176 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐹)
2625necomd 2999 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝐸)
2724, 26jca 512 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐷𝐸𝐹𝐸))
28 simprl 768 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
29 simprr 770 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
304ad6antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐺 ∈ TarskiG)
31 simp-5r 783 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝑃)
328ad6antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑃)
33 simp-4r 781 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝑃)
34 simpllr 773 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑𝑃)
3514ad6antr 733 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑃)
36 simplr 766 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓𝑃)
3716ad6antr 733 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝑃)
3812ad6antr 733 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝑃)
3910ad6antr 733 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝑃)
406ad6antr 733 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝑃)
41 simp-6r 785 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
421, 2, 30, 3, 40, 32, 39, 38, 35, 37, 41cgracom 27183 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
4328simplld 765 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝐵𝐼𝑎))
44 dfcgra2.m . . . . . . . . . . . . . . . . . 18 = (dist‘𝐺)
4519ad5antr 731 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝐵)
461, 44, 2, 30, 32, 40, 31, 43, 45tgbtwnne 26851 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑎)
471, 2, 3, 32, 31, 40, 30, 40, 43, 46, 45btwnhl1 26973 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴((hlG‘𝐺)‘𝐵)𝑎)
481, 2, 3, 40, 31, 32, 30, 47hlcomd 26965 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝐴)
491, 2, 3, 30, 38, 35, 37, 40, 32, 39, 42, 31, 48cgrahl1 27177 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝐶”⟩)
5028simprld 769 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝐵𝐼𝑐))
5121ad5antr 731 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝐵)
521, 44, 2, 30, 32, 39, 33, 50, 51tgbtwnne 26851 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
531, 2, 3, 32, 33, 39, 30, 40, 50, 52, 51btwnhl1 26973 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶((hlG‘𝐺)‘𝐵)𝑐)
541, 2, 3, 39, 33, 32, 30, 53hlcomd 26965 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝐶)
551, 2, 3, 30, 38, 35, 37, 31, 32, 39, 49, 33, 54cgrahl2 27178 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝑐”⟩)
561, 2, 30, 3, 38, 35, 37, 31, 32, 33, 55cgracom 27183 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
5729simplld 765 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷 ∈ (𝐸𝐼𝑑))
5824ad5antr 731 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝐸)
591, 44, 2, 30, 35, 38, 34, 57, 58tgbtwnne 26851 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑑)
601, 2, 3, 35, 34, 38, 30, 40, 57, 59, 58btwnhl1 26973 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
611, 2, 3, 38, 34, 35, 30, 60hlcomd 26965 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
621, 2, 3, 30, 31, 32, 33, 38, 35, 37, 56, 34, 61cgrahl1 27177 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝐹”⟩)
6329simprld 769 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹 ∈ (𝐸𝐼𝑓))
6426ad5antr 731 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝐸)
651, 44, 2, 30, 35, 37, 36, 63, 64tgbtwnne 26851 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑓)
661, 2, 3, 35, 36, 37, 30, 40, 63, 65, 64btwnhl1 26973 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
671, 2, 3, 37, 36, 35, 30, 66hlcomd 26965 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
681, 2, 3, 30, 31, 32, 33, 34, 35, 37, 62, 36, 67cgrahl2 27178 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
6946necomd 2999 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝐵)
701, 2, 3, 31, 40, 32, 30, 69hlid 26970 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝑎)
7152necomd 2999 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝐵)
721, 2, 3, 33, 40, 32, 30, 71hlid 26970 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝑐)
731, 44, 2, 30, 32, 40, 31, 43tgbtwncom 26849 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝑎𝐼𝐵))
7428simplrd 767 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝑎) = (𝐸 𝐷))
751, 44, 2, 30, 40, 31, 35, 38, 74tgcgrcoml 26840 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐴) = (𝐸 𝐷))
7629simplrd 767 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐷 𝑑) = (𝐵 𝐴))
7776eqcomd 2744 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐴) = (𝐷 𝑑))
781, 44, 2, 30, 32, 40, 38, 34, 77tgcgrcoml 26840 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝐵) = (𝐷 𝑑))
791, 44, 2, 30, 31, 40, 32, 35, 38, 34, 73, 57, 75, 78tgcgrextend 26846 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐵) = (𝐸 𝑑))
801, 44, 2, 30, 31, 32, 35, 34, 79tgcgrcoml 26840 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑎) = (𝐸 𝑑))
811, 44, 2, 30, 32, 39, 33, 50tgbtwncom 26849 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝑐𝐼𝐵))
8228simprrd 771 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝑐) = (𝐸 𝐹))
831, 44, 2, 30, 39, 33, 35, 37, 82tgcgrcoml 26840 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐶) = (𝐸 𝐹))
8429simprrd 771 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐹 𝑓) = (𝐵 𝐶))
8584eqcomd 2744 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐶) = (𝐹 𝑓))
861, 44, 2, 30, 32, 39, 37, 36, 85tgcgrcoml 26840 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝐵) = (𝐹 𝑓))
871, 44, 2, 30, 33, 39, 32, 35, 37, 36, 81, 63, 83, 86tgcgrextend 26846 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐵) = (𝐸 𝑓))
881, 44, 2, 30, 33, 32, 35, 36, 87tgcgrcoml 26840 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑐) = (𝐸 𝑓))
891, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68, 31, 44, 33, 70, 72, 80, 88cgracgr 27179 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝑐) = (𝑑 𝑓))
9028, 29, 893jca 1127 . . . . . . . 8 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
9190ex 413 . . . . . . 7 ((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9291reximdva 3203 . . . . . 6 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) → (∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9392reximdva 3203 . . . . 5 ((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9493imp 407 . . . 4 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
951, 44, 2, 4, 8, 6, 14, 12axtgsegcon 26825 . . . . . . . 8 (𝜑 → ∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)))
961, 44, 2, 4, 8, 10, 14, 16axtgsegcon 26825 . . . . . . . 8 (𝜑 → ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))
97 reeanv 3294 . . . . . . . 8 (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ (∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
9895, 96, 97sylanbrc 583 . . . . . . 7 (𝜑 → ∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
991, 44, 2, 4, 14, 12, 8, 6axtgsegcon 26825 . . . . . . . 8 (𝜑 → ∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)))
1001, 44, 2, 4, 14, 16, 8, 10axtgsegcon 26825 . . . . . . . 8 (𝜑 → ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))
101 reeanv 3294 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ (∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10299, 100, 101sylanbrc 583 . . . . . . 7 (𝜑 → ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10398, 102jca 512 . . . . . 6 (𝜑 → (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
104 r19.41vv 3278 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
105 ancom 461 . . . . . . . . . 10 ((((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1061052rexbii 3182 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
107 ancom 461 . . . . . . . . 9 ((∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
108104, 106, 1073bitr3i 301 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1091082rexbii 3182 . . . . . . 7 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
110 r19.41vv 3278 . . . . . . 7 (∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
111109, 110bitr2i 275 . . . . . 6 ((∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
112103, 111sylib 217 . . . . 5 (𝜑 → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
113112adantr 481 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
11494, 113reximddv2 3207 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
11522, 27, 1143jca 1127 . 2 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
116 df-3an 1088 . . 3 (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ↔ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
1174ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐺 ∈ TarskiG)
11812ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝑃)
11914ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑃)
12016ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝑃)
1216ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝑃)
1228ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑃)
12310ad6antr 733 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝑃)
124 simp-4r 781 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑦𝑃)
125 simp-5r 783 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑥𝑃)
126 simpllr 773 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧𝑃)
127 simplr 766 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡𝑃)
128 eqid 2738 . . . . . . . . . . . . . 14 (cgrG‘𝐺) = (cgrG‘𝐺)
129 simpr1 1193 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
130129simplld 765 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴 ∈ (𝐵𝐼𝑥))
131 simpr2 1194 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
132131simplld 765 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝐸𝐼𝑧))
1331, 44, 2, 117, 119, 118, 126, 132tgbtwncom 26849 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝑧𝐼𝐸))
134131simplrd 767 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐷 𝑧) = (𝐵 𝐴))
135134eqcomd 2744 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝐷 𝑧))
1361, 44, 2, 117, 122, 121, 118, 126, 135tgcgrcomr 26839 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝑧 𝐷))
137129simplrd 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐸 𝐷))
1381, 44, 2, 117, 121, 125, 119, 118, 137tgcgrcomr 26839 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐷 𝐸))
1391, 44, 2, 117, 122, 121, 125, 126, 118, 119, 130, 133, 136, 138tgcgrextend 26846 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑥) = (𝑧 𝐸))
1401, 44, 2, 117, 122, 125, 126, 119, 139tgcgrcoml 26840 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝐵) = (𝑧 𝐸))
141129simprld 769 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝐵𝐼𝑦))
1421, 44, 2, 117, 122, 123, 124, 141tgbtwncom 26849 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝑦𝐼𝐵))
143131simprld 769 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹 ∈ (𝐸𝐼𝑡))
144129simprrd 771 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝑦) = (𝐸 𝐹))
1451, 44, 2, 117, 123, 124, 119, 120, 144tgcgrcoml 26840 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐶) = (𝐸 𝐹))
146131simprrd 771 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐹 𝑡) = (𝐵 𝐶))
147146eqcomd 2744 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐶) = (𝐹 𝑡))
1481, 44, 2, 117, 122, 123, 120, 127, 147tgcgrcoml 26840 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝐵) = (𝐹 𝑡))
1491, 44, 2, 117, 124, 123, 122, 119, 120, 127, 142, 143, 145, 148tgcgrextend 26846 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐵) = (𝐸 𝑡))
1501, 44, 2, 117, 124, 122, 119, 127, 149tgcgrcoml 26840 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑦) = (𝐸 𝑡))
151 simpr3 1195 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝑦) = (𝑧 𝑡))
1521, 44, 2, 117, 125, 124, 126, 127, 151tgcgrcomlr 26841 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝑥) = (𝑡 𝑧))
1531, 44, 128, 117, 125, 122, 124, 126, 119, 127, 140, 150, 152trgcgr 26877 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrG‘𝐺)⟨“𝑧𝐸𝑡”⟩)
154 simp-6r 785 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)))
155154simprld 769 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝐸)
1561, 44, 2, 117, 119, 118, 126, 132, 155tgbtwnne 26851 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑧)
1571, 2, 3, 119, 126, 118, 117, 122, 132, 156, 155btwnhl1 26973 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷((hlG‘𝐺)‘𝐸)𝑧)
1581, 2, 3, 118, 126, 119, 117, 157hlcomd 26965 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧((hlG‘𝐺)‘𝐸)𝐷)
159154simprrd 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝐸)
1601, 44, 2, 117, 119, 120, 127, 143, 159tgbtwnne 26851 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑡)
1611, 2, 3, 119, 127, 120, 117, 122, 143, 160, 159btwnhl1 26973 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹((hlG‘𝐺)‘𝐸)𝑡)
1621, 2, 3, 120, 127, 119, 117, 161hlcomd 26965 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡((hlG‘𝐺)‘𝐸)𝐹)
1631, 2, 3, 117, 125, 122, 124, 118, 119, 120, 126, 127, 153, 158, 162iscgrad 27172 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1641, 2, 117, 3, 125, 122, 124, 118, 119, 120, 163cgracom 27183 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝐵𝑦”⟩)
165154simplld 765 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝐵)
1661, 44, 2, 117, 122, 121, 125, 130, 165tgbtwnne 26851 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑥)
1671, 2, 3, 122, 125, 121, 117, 121, 130, 166, 165btwnhl1 26973 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴((hlG‘𝐺)‘𝐵)𝑥)
1681, 2, 3, 117, 118, 119, 120, 125, 122, 124, 164, 121, 167cgrahl1 27177 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝑦”⟩)
169154simplrd 767 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝐵)
1701, 44, 2, 117, 122, 123, 124, 141, 169tgbtwnne 26851 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑦)
1711, 2, 3, 122, 124, 123, 117, 121, 141, 170, 169btwnhl1 26973 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶((hlG‘𝐺)‘𝐵)𝑦)
1721, 2, 3, 117, 118, 119, 120, 121, 122, 124, 168, 123, 171cgrahl2 27178 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1731, 2, 117, 3, 118, 119, 120, 121, 122, 123, 172cgracom 27183 . . . . . . . 8 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
174173adantl3r 747 . . . . . . 7 ((((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
175 simpr 485 . . . . . . . 8 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
176 oveq2 7283 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐸𝐼𝑑) = (𝐸𝐼𝑧))
177176eleq2d 2824 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝐷 ∈ (𝐸𝐼𝑑) ↔ 𝐷 ∈ (𝐸𝐼𝑧)))
178 oveq2 7283 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐷 𝑑) = (𝐷 𝑧))
179178eqeq1d 2740 . . . . . . . . . . . 12 (𝑑 = 𝑧 → ((𝐷 𝑑) = (𝐵 𝐴) ↔ (𝐷 𝑧) = (𝐵 𝐴)))
180177, 179anbi12d 631 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
181180anbi1d 630 . . . . . . . . . 10 (𝑑 = 𝑧 → (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
182 oveq1 7282 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑑 𝑓) = (𝑧 𝑓))
183182eqeq2d 2749 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑥 𝑦) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑓)))
184181, 1833anbi23d 1438 . . . . . . . . 9 (𝑑 = 𝑧 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓))))
185 oveq2 7283 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐸𝐼𝑓) = (𝐸𝐼𝑡))
186185eleq2d 2824 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝐹 ∈ (𝐸𝐼𝑓) ↔ 𝐹 ∈ (𝐸𝐼𝑡)))
187 oveq2 7283 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐹 𝑓) = (𝐹 𝑡))
188187eqeq1d 2740 . . . . . . . . . . . 12 (𝑓 = 𝑡 → ((𝐹 𝑓) = (𝐵 𝐶) ↔ (𝐹 𝑡) = (𝐵 𝐶)))
189186, 188anbi12d 631 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
190189anbi2d 629 . . . . . . . . . 10 (𝑓 = 𝑡 → (((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶)))))
191 oveq2 7283 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑧 𝑓) = (𝑧 𝑡))
192191eqeq2d 2749 . . . . . . . . . 10 (𝑓 = 𝑡 → ((𝑥 𝑦) = (𝑧 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑡)))
193190, 1923anbi23d 1438 . . . . . . . . 9 (𝑓 = 𝑡 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))))
194184, 193cbvrex2vw 3397 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
195175, 194sylib 217 . . . . . . 7 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
196174, 195r19.29vva 3266 . . . . . 6 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
197196adantl3r 747 . . . . 5 ((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
198 simpr 485 . . . . . 6 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
199 oveq2 7283 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐵𝐼𝑎) = (𝐵𝐼𝑥))
200199eleq2d 2824 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐴 ∈ (𝐵𝐼𝑎) ↔ 𝐴 ∈ (𝐵𝐼𝑥)))
201 oveq2 7283 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐴 𝑎) = (𝐴 𝑥))
202201eqeq1d 2740 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐴 𝑎) = (𝐸 𝐷) ↔ (𝐴 𝑥) = (𝐸 𝐷)))
203200, 202anbi12d 631 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
204203anbi1d 630 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
205 oveq1 7282 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 𝑐) = (𝑥 𝑐))
206205eqeq1d 2740 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑐) = (𝑑 𝑓)))
207204, 2063anbi13d 1437 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
2082072rexbidv 3229 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
209 oveq2 7283 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐵𝐼𝑐) = (𝐵𝐼𝑦))
210209eleq2d 2824 . . . . . . . . . . 11 (𝑐 = 𝑦 → (𝐶 ∈ (𝐵𝐼𝑐) ↔ 𝐶 ∈ (𝐵𝐼𝑦)))
211 oveq2 7283 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐶 𝑐) = (𝐶 𝑦))
212211eqeq1d 2740 . . . . . . . . . . 11 (𝑐 = 𝑦 → ((𝐶 𝑐) = (𝐸 𝐹) ↔ (𝐶 𝑦) = (𝐸 𝐹)))
213210, 212anbi12d 631 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
214213anbi2d 629 . . . . . . . . 9 (𝑐 = 𝑦 → (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹)))))
215 oveq2 7283 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑥 𝑐) = (𝑥 𝑦))
216215eqeq1d 2740 . . . . . . . . 9 (𝑐 = 𝑦 → ((𝑥 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑑 𝑓)))
217214, 2163anbi13d 1437 . . . . . . . 8 (𝑐 = 𝑦 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
2182172rexbidv 3229 . . . . . . 7 (𝑐 = 𝑦 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
219208, 218cbvrex2vw 3397 . . . . . 6 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
220198, 219sylib 217 . . . . 5 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
221197, 220r19.29vva 3266 . . . 4 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
222221anasss 467 . . 3 ((𝜑 ∧ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
223116, 222sylan2b 594 . 2 ((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
224115, 223impbida 798 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  ⟨“cs3 14555  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  cgrGccgrg 26871  hlGchlg 26961  cgrAccgra 27168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-hlg 26962  df-cgra 27169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator