MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgra2 Structured version   Visualization version   GIF version

Theorem dfcgra2 26624
Description: This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 26602 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
Assertion
Ref Expression
dfcgra2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Distinct variable groups:   ,𝑎,𝑐,𝑑,𝑓   𝐴,𝑎,𝑐,𝑑,𝑓   𝐵,𝑎,𝑐,𝑑,𝑓   𝐶,𝑎,𝑐,𝑑,𝑓   𝐷,𝑎,𝑐,𝑑,𝑓   𝐸,𝑎,𝑐,𝑑,𝑓   𝐹,𝑎,𝑐,𝑑,𝑓   𝐺,𝑎,𝑐,𝑑,𝑓   𝐼,𝑎,𝑐,𝑑,𝑓   𝑃,𝑎,𝑐,𝑑,𝑓   𝜑,𝑎,𝑐,𝑑,𝑓

Proof of Theorem dfcgra2
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . . 5 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 eqid 2798 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgra2.a . . . . . 6 (𝜑𝐴𝑃)
76adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgra2.b . . . . . 6 (𝜑𝐵𝑃)
98adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgra2.c . . . . . 6 (𝜑𝐶𝑃)
1110adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
1312adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgra2.f . . . . . 6 (𝜑𝐹𝑃)
1716adantr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 simpr 488 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
191, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane1 26606 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane2 26607 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
2120necomd 3042 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐵)
2219, 21jca 515 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴𝐵𝐶𝐵))
231, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane3 26608 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐷)
2423necomd 3042 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝐸)
251, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane4 26609 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐹)
2625necomd 3042 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝐸)
2724, 26jca 515 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐷𝐸𝐹𝐸))
28 simprl 770 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
29 simprr 772 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
304ad6antr 735 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐺 ∈ TarskiG)
31 simp-5r 785 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝑃)
328ad6antr 735 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑃)
33 simp-4r 783 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝑃)
34 simpllr 775 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑𝑃)
3514ad6antr 735 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑃)
36 simplr 768 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓𝑃)
3716ad6antr 735 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝑃)
3812ad6antr 735 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝑃)
3910ad6antr 735 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝑃)
406ad6antr 735 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝑃)
41 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
421, 2, 30, 3, 40, 32, 39, 38, 35, 37, 41cgracom 26616 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
4328simplld 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝐵𝐼𝑎))
44 dfcgra2.m . . . . . . . . . . . . . . . . . 18 = (dist‘𝐺)
4519ad5antr 733 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝐵)
461, 44, 2, 30, 32, 40, 31, 43, 45tgbtwnne 26284 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑎)
471, 2, 3, 32, 31, 40, 30, 40, 43, 46, 45btwnhl1 26406 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴((hlG‘𝐺)‘𝐵)𝑎)
481, 2, 3, 40, 31, 32, 30, 47hlcomd 26398 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝐴)
491, 2, 3, 30, 38, 35, 37, 40, 32, 39, 42, 31, 48cgrahl1 26610 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝐶”⟩)
5028simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝐵𝐼𝑐))
5121ad5antr 733 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝐵)
521, 44, 2, 30, 32, 39, 33, 50, 51tgbtwnne 26284 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
531, 2, 3, 32, 33, 39, 30, 40, 50, 52, 51btwnhl1 26406 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶((hlG‘𝐺)‘𝐵)𝑐)
541, 2, 3, 39, 33, 32, 30, 53hlcomd 26398 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝐶)
551, 2, 3, 30, 38, 35, 37, 31, 32, 39, 49, 33, 54cgrahl2 26611 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝑐”⟩)
561, 2, 30, 3, 38, 35, 37, 31, 32, 33, 55cgracom 26616 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
5729simplld 767 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷 ∈ (𝐸𝐼𝑑))
5824ad5antr 733 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝐸)
591, 44, 2, 30, 35, 38, 34, 57, 58tgbtwnne 26284 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑑)
601, 2, 3, 35, 34, 38, 30, 40, 57, 59, 58btwnhl1 26406 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
611, 2, 3, 38, 34, 35, 30, 60hlcomd 26398 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
621, 2, 3, 30, 31, 32, 33, 38, 35, 37, 56, 34, 61cgrahl1 26610 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝐹”⟩)
6329simprld 771 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹 ∈ (𝐸𝐼𝑓))
6426ad5antr 733 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝐸)
651, 44, 2, 30, 35, 37, 36, 63, 64tgbtwnne 26284 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑓)
661, 2, 3, 35, 36, 37, 30, 40, 63, 65, 64btwnhl1 26406 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
671, 2, 3, 37, 36, 35, 30, 66hlcomd 26398 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
681, 2, 3, 30, 31, 32, 33, 34, 35, 37, 62, 36, 67cgrahl2 26611 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
6946necomd 3042 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝐵)
701, 2, 3, 31, 40, 32, 30, 69hlid 26403 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝑎)
7152necomd 3042 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝐵)
721, 2, 3, 33, 40, 32, 30, 71hlid 26403 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝑐)
731, 44, 2, 30, 32, 40, 31, 43tgbtwncom 26282 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝑎𝐼𝐵))
7428simplrd 769 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝑎) = (𝐸 𝐷))
751, 44, 2, 30, 40, 31, 35, 38, 74tgcgrcoml 26273 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐴) = (𝐸 𝐷))
7629simplrd 769 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐷 𝑑) = (𝐵 𝐴))
7776eqcomd 2804 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐴) = (𝐷 𝑑))
781, 44, 2, 30, 32, 40, 38, 34, 77tgcgrcoml 26273 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝐵) = (𝐷 𝑑))
791, 44, 2, 30, 31, 40, 32, 35, 38, 34, 73, 57, 75, 78tgcgrextend 26279 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐵) = (𝐸 𝑑))
801, 44, 2, 30, 31, 32, 35, 34, 79tgcgrcoml 26273 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑎) = (𝐸 𝑑))
811, 44, 2, 30, 32, 39, 33, 50tgbtwncom 26282 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝑐𝐼𝐵))
8228simprrd 773 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝑐) = (𝐸 𝐹))
831, 44, 2, 30, 39, 33, 35, 37, 82tgcgrcoml 26273 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐶) = (𝐸 𝐹))
8429simprrd 773 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐹 𝑓) = (𝐵 𝐶))
8584eqcomd 2804 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐶) = (𝐹 𝑓))
861, 44, 2, 30, 32, 39, 37, 36, 85tgcgrcoml 26273 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝐵) = (𝐹 𝑓))
871, 44, 2, 30, 33, 39, 32, 35, 37, 36, 81, 63, 83, 86tgcgrextend 26279 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐵) = (𝐸 𝑓))
881, 44, 2, 30, 33, 32, 35, 36, 87tgcgrcoml 26273 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑐) = (𝐸 𝑓))
891, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68, 31, 44, 33, 70, 72, 80, 88cgracgr 26612 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝑐) = (𝑑 𝑓))
9028, 29, 893jca 1125 . . . . . . . 8 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
9190ex 416 . . . . . . 7 ((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9291reximdva 3233 . . . . . 6 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) → (∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9392reximdva 3233 . . . . 5 ((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9493imp 410 . . . 4 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
951, 44, 2, 4, 8, 6, 14, 12axtgsegcon 26258 . . . . . . . 8 (𝜑 → ∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)))
961, 44, 2, 4, 8, 10, 14, 16axtgsegcon 26258 . . . . . . . 8 (𝜑 → ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))
97 reeanv 3320 . . . . . . . 8 (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ (∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
9895, 96, 97sylanbrc 586 . . . . . . 7 (𝜑 → ∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
991, 44, 2, 4, 14, 12, 8, 6axtgsegcon 26258 . . . . . . . 8 (𝜑 → ∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)))
1001, 44, 2, 4, 14, 16, 8, 10axtgsegcon 26258 . . . . . . . 8 (𝜑 → ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))
101 reeanv 3320 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ (∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10299, 100, 101sylanbrc 586 . . . . . . 7 (𝜑 → ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10398, 102jca 515 . . . . . 6 (𝜑 → (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
104 r19.41vv 3302 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
105 ancom 464 . . . . . . . . . 10 ((((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1061052rexbii 3211 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
107 ancom 464 . . . . . . . . 9 ((∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
108104, 106, 1073bitr3i 304 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1091082rexbii 3211 . . . . . . 7 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
110 r19.41vv 3302 . . . . . . 7 (∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
111109, 110bitr2i 279 . . . . . 6 ((∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
112103, 111sylib 221 . . . . 5 (𝜑 → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
113112adantr 484 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
11494, 113reximddv2 3237 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
11522, 27, 1143jca 1125 . 2 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
116 df-3an 1086 . . 3 (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ↔ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
1174ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐺 ∈ TarskiG)
11812ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝑃)
11914ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑃)
12016ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝑃)
1216ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝑃)
1228ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑃)
12310ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝑃)
124 simp-4r 783 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑦𝑃)
125 simp-5r 785 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑥𝑃)
126 simpllr 775 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧𝑃)
127 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡𝑃)
128 eqid 2798 . . . . . . . . . . . . . 14 (cgrG‘𝐺) = (cgrG‘𝐺)
129 simpr1 1191 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
130129simplld 767 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴 ∈ (𝐵𝐼𝑥))
131 simpr2 1192 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
132131simplld 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝐸𝐼𝑧))
1331, 44, 2, 117, 119, 118, 126, 132tgbtwncom 26282 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝑧𝐼𝐸))
134131simplrd 769 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐷 𝑧) = (𝐵 𝐴))
135134eqcomd 2804 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝐷 𝑧))
1361, 44, 2, 117, 122, 121, 118, 126, 135tgcgrcomr 26272 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝑧 𝐷))
137129simplrd 769 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐸 𝐷))
1381, 44, 2, 117, 121, 125, 119, 118, 137tgcgrcomr 26272 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐷 𝐸))
1391, 44, 2, 117, 122, 121, 125, 126, 118, 119, 130, 133, 136, 138tgcgrextend 26279 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑥) = (𝑧 𝐸))
1401, 44, 2, 117, 122, 125, 126, 119, 139tgcgrcoml 26273 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝐵) = (𝑧 𝐸))
141129simprld 771 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝐵𝐼𝑦))
1421, 44, 2, 117, 122, 123, 124, 141tgbtwncom 26282 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝑦𝐼𝐵))
143131simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹 ∈ (𝐸𝐼𝑡))
144129simprrd 773 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝑦) = (𝐸 𝐹))
1451, 44, 2, 117, 123, 124, 119, 120, 144tgcgrcoml 26273 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐶) = (𝐸 𝐹))
146131simprrd 773 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐹 𝑡) = (𝐵 𝐶))
147146eqcomd 2804 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐶) = (𝐹 𝑡))
1481, 44, 2, 117, 122, 123, 120, 127, 147tgcgrcoml 26273 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝐵) = (𝐹 𝑡))
1491, 44, 2, 117, 124, 123, 122, 119, 120, 127, 142, 143, 145, 148tgcgrextend 26279 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐵) = (𝐸 𝑡))
1501, 44, 2, 117, 124, 122, 119, 127, 149tgcgrcoml 26273 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑦) = (𝐸 𝑡))
151 simpr3 1193 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝑦) = (𝑧 𝑡))
1521, 44, 2, 117, 125, 124, 126, 127, 151tgcgrcomlr 26274 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝑥) = (𝑡 𝑧))
1531, 44, 128, 117, 125, 122, 124, 126, 119, 127, 140, 150, 152trgcgr 26310 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrG‘𝐺)⟨“𝑧𝐸𝑡”⟩)
154 simp-6r 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)))
155154simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝐸)
1561, 44, 2, 117, 119, 118, 126, 132, 155tgbtwnne 26284 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑧)
1571, 2, 3, 119, 126, 118, 117, 122, 132, 156, 155btwnhl1 26406 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷((hlG‘𝐺)‘𝐸)𝑧)
1581, 2, 3, 118, 126, 119, 117, 157hlcomd 26398 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧((hlG‘𝐺)‘𝐸)𝐷)
159154simprrd 773 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝐸)
1601, 44, 2, 117, 119, 120, 127, 143, 159tgbtwnne 26284 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑡)
1611, 2, 3, 119, 127, 120, 117, 122, 143, 160, 159btwnhl1 26406 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹((hlG‘𝐺)‘𝐸)𝑡)
1621, 2, 3, 120, 127, 119, 117, 161hlcomd 26398 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡((hlG‘𝐺)‘𝐸)𝐹)
1631, 2, 3, 117, 125, 122, 124, 118, 119, 120, 126, 127, 153, 158, 162iscgrad 26605 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1641, 2, 117, 3, 125, 122, 124, 118, 119, 120, 163cgracom 26616 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝐵𝑦”⟩)
165154simplld 767 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝐵)
1661, 44, 2, 117, 122, 121, 125, 130, 165tgbtwnne 26284 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑥)
1671, 2, 3, 122, 125, 121, 117, 121, 130, 166, 165btwnhl1 26406 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴((hlG‘𝐺)‘𝐵)𝑥)
1681, 2, 3, 117, 118, 119, 120, 125, 122, 124, 164, 121, 167cgrahl1 26610 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝑦”⟩)
169154simplrd 769 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝐵)
1701, 44, 2, 117, 122, 123, 124, 141, 169tgbtwnne 26284 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑦)
1711, 2, 3, 122, 124, 123, 117, 121, 141, 170, 169btwnhl1 26406 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶((hlG‘𝐺)‘𝐵)𝑦)
1721, 2, 3, 117, 118, 119, 120, 121, 122, 124, 168, 123, 171cgrahl2 26611 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1731, 2, 117, 3, 118, 119, 120, 121, 122, 123, 172cgracom 26616 . . . . . . . 8 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
174173adantl3r 749 . . . . . . 7 ((((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
175 simpr 488 . . . . . . . 8 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
176 oveq2 7143 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐸𝐼𝑑) = (𝐸𝐼𝑧))
177176eleq2d 2875 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝐷 ∈ (𝐸𝐼𝑑) ↔ 𝐷 ∈ (𝐸𝐼𝑧)))
178 oveq2 7143 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐷 𝑑) = (𝐷 𝑧))
179178eqeq1d 2800 . . . . . . . . . . . 12 (𝑑 = 𝑧 → ((𝐷 𝑑) = (𝐵 𝐴) ↔ (𝐷 𝑧) = (𝐵 𝐴)))
180177, 179anbi12d 633 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
181180anbi1d 632 . . . . . . . . . 10 (𝑑 = 𝑧 → (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
182 oveq1 7142 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑑 𝑓) = (𝑧 𝑓))
183182eqeq2d 2809 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑥 𝑦) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑓)))
184181, 1833anbi23d 1436 . . . . . . . . 9 (𝑑 = 𝑧 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓))))
185 oveq2 7143 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐸𝐼𝑓) = (𝐸𝐼𝑡))
186185eleq2d 2875 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝐹 ∈ (𝐸𝐼𝑓) ↔ 𝐹 ∈ (𝐸𝐼𝑡)))
187 oveq2 7143 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐹 𝑓) = (𝐹 𝑡))
188187eqeq1d 2800 . . . . . . . . . . . 12 (𝑓 = 𝑡 → ((𝐹 𝑓) = (𝐵 𝐶) ↔ (𝐹 𝑡) = (𝐵 𝐶)))
189186, 188anbi12d 633 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
190189anbi2d 631 . . . . . . . . . 10 (𝑓 = 𝑡 → (((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶)))))
191 oveq2 7143 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑧 𝑓) = (𝑧 𝑡))
192191eqeq2d 2809 . . . . . . . . . 10 (𝑓 = 𝑡 → ((𝑥 𝑦) = (𝑧 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑡)))
193190, 1923anbi23d 1436 . . . . . . . . 9 (𝑓 = 𝑡 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))))
194184, 193cbvrex2vw 3409 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
195175, 194sylib 221 . . . . . . 7 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
196174, 195r19.29vva 3292 . . . . . 6 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
197196adantl3r 749 . . . . 5 ((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
198 simpr 488 . . . . . 6 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
199 oveq2 7143 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐵𝐼𝑎) = (𝐵𝐼𝑥))
200199eleq2d 2875 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐴 ∈ (𝐵𝐼𝑎) ↔ 𝐴 ∈ (𝐵𝐼𝑥)))
201 oveq2 7143 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐴 𝑎) = (𝐴 𝑥))
202201eqeq1d 2800 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐴 𝑎) = (𝐸 𝐷) ↔ (𝐴 𝑥) = (𝐸 𝐷)))
203200, 202anbi12d 633 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
204203anbi1d 632 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
205 oveq1 7142 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 𝑐) = (𝑥 𝑐))
206205eqeq1d 2800 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑐) = (𝑑 𝑓)))
207204, 2063anbi13d 1435 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
2082072rexbidv 3259 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
209 oveq2 7143 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐵𝐼𝑐) = (𝐵𝐼𝑦))
210209eleq2d 2875 . . . . . . . . . . 11 (𝑐 = 𝑦 → (𝐶 ∈ (𝐵𝐼𝑐) ↔ 𝐶 ∈ (𝐵𝐼𝑦)))
211 oveq2 7143 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐶 𝑐) = (𝐶 𝑦))
212211eqeq1d 2800 . . . . . . . . . . 11 (𝑐 = 𝑦 → ((𝐶 𝑐) = (𝐸 𝐹) ↔ (𝐶 𝑦) = (𝐸 𝐹)))
213210, 212anbi12d 633 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
214213anbi2d 631 . . . . . . . . 9 (𝑐 = 𝑦 → (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹)))))
215 oveq2 7143 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑥 𝑐) = (𝑥 𝑦))
216215eqeq1d 2800 . . . . . . . . 9 (𝑐 = 𝑦 → ((𝑥 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑑 𝑓)))
217214, 2163anbi13d 1435 . . . . . . . 8 (𝑐 = 𝑦 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
2182172rexbidv 3259 . . . . . . 7 (𝑐 = 𝑦 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
219208, 218cbvrex2vw 3409 . . . . . 6 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
220198, 219sylib 221 . . . . 5 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
221197, 220r19.29vva 3292 . . . 4 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
222221anasss 470 . . 3 ((𝜑 ∧ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
223116, 222sylan2b 596 . 2 ((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
224115, 223impbida 800 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  cgrGccgrg 26304  hlGchlg 26394  cgrAccgra 26601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-hlg 26395  df-cgra 26602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator