MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgra2 Structured version   Visualization version   GIF version

Theorem dfcgra2 28764
Description: This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 28742 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
Assertion
Ref Expression
dfcgra2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Distinct variable groups:   ,𝑎,𝑐,𝑑,𝑓   𝐴,𝑎,𝑐,𝑑,𝑓   𝐵,𝑎,𝑐,𝑑,𝑓   𝐶,𝑎,𝑐,𝑑,𝑓   𝐷,𝑎,𝑐,𝑑,𝑓   𝐸,𝑎,𝑐,𝑑,𝑓   𝐹,𝑎,𝑐,𝑑,𝑓   𝐺,𝑎,𝑐,𝑑,𝑓   𝐼,𝑎,𝑐,𝑑,𝑓   𝑃,𝑎,𝑐,𝑑,𝑓   𝜑,𝑎,𝑐,𝑑,𝑓

Proof of Theorem dfcgra2
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . . 5 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 eqid 2730 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgra2.a . . . . . 6 (𝜑𝐴𝑃)
76adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgra2.b . . . . . 6 (𝜑𝐵𝑃)
98adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgra2.c . . . . . 6 (𝜑𝐶𝑃)
1110adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
1312adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgra2.f . . . . . 6 (𝜑𝐹𝑃)
1716adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 simpr 484 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
191, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane1 28746 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane2 28747 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
2120necomd 2981 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐵)
2219, 21jca 511 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴𝐵𝐶𝐵))
231, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane3 28748 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐷)
2423necomd 2981 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝐸)
251, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane4 28749 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐹)
2625necomd 2981 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝐸)
2724, 26jca 511 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐷𝐸𝐹𝐸))
28 simprl 770 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
29 simprr 772 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
304ad6antr 736 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐺 ∈ TarskiG)
31 simp-5r 785 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝑃)
328ad6antr 736 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑃)
33 simp-4r 783 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝑃)
34 simpllr 775 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑𝑃)
3514ad6antr 736 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑃)
36 simplr 768 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓𝑃)
3716ad6antr 736 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝑃)
3812ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝑃)
3910ad6antr 736 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝑃)
406ad6antr 736 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝑃)
41 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
421, 2, 30, 3, 40, 32, 39, 38, 35, 37, 41cgracom 28756 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
4328simplld 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝐵𝐼𝑎))
44 dfcgra2.m . . . . . . . . . . . . . . . . . 18 = (dist‘𝐺)
4519ad5antr 734 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝐵)
461, 44, 2, 30, 32, 40, 31, 43, 45tgbtwnne 28424 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑎)
471, 2, 3, 32, 31, 40, 30, 40, 43, 46, 45btwnhl1 28546 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴((hlG‘𝐺)‘𝐵)𝑎)
481, 2, 3, 40, 31, 32, 30, 47hlcomd 28538 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝐴)
491, 2, 3, 30, 38, 35, 37, 40, 32, 39, 42, 31, 48cgrahl1 28750 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝐶”⟩)
5028simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝐵𝐼𝑐))
5121ad5antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝐵)
521, 44, 2, 30, 32, 39, 33, 50, 51tgbtwnne 28424 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
531, 2, 3, 32, 33, 39, 30, 40, 50, 52, 51btwnhl1 28546 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶((hlG‘𝐺)‘𝐵)𝑐)
541, 2, 3, 39, 33, 32, 30, 53hlcomd 28538 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝐶)
551, 2, 3, 30, 38, 35, 37, 31, 32, 39, 49, 33, 54cgrahl2 28751 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝑐”⟩)
561, 2, 30, 3, 38, 35, 37, 31, 32, 33, 55cgracom 28756 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
5729simplld 767 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷 ∈ (𝐸𝐼𝑑))
5824ad5antr 734 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝐸)
591, 44, 2, 30, 35, 38, 34, 57, 58tgbtwnne 28424 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑑)
601, 2, 3, 35, 34, 38, 30, 40, 57, 59, 58btwnhl1 28546 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
611, 2, 3, 38, 34, 35, 30, 60hlcomd 28538 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
621, 2, 3, 30, 31, 32, 33, 38, 35, 37, 56, 34, 61cgrahl1 28750 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝐹”⟩)
6329simprld 771 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹 ∈ (𝐸𝐼𝑓))
6426ad5antr 734 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝐸)
651, 44, 2, 30, 35, 37, 36, 63, 64tgbtwnne 28424 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑓)
661, 2, 3, 35, 36, 37, 30, 40, 63, 65, 64btwnhl1 28546 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
671, 2, 3, 37, 36, 35, 30, 66hlcomd 28538 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
681, 2, 3, 30, 31, 32, 33, 34, 35, 37, 62, 36, 67cgrahl2 28751 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
6946necomd 2981 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝐵)
701, 2, 3, 31, 40, 32, 30, 69hlid 28543 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝑎)
7152necomd 2981 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝐵)
721, 2, 3, 33, 40, 32, 30, 71hlid 28543 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝑐)
731, 44, 2, 30, 32, 40, 31, 43tgbtwncom 28422 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝑎𝐼𝐵))
7428simplrd 769 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝑎) = (𝐸 𝐷))
751, 44, 2, 30, 40, 31, 35, 38, 74tgcgrcoml 28413 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐴) = (𝐸 𝐷))
7629simplrd 769 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐷 𝑑) = (𝐵 𝐴))
7776eqcomd 2736 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐴) = (𝐷 𝑑))
781, 44, 2, 30, 32, 40, 38, 34, 77tgcgrcoml 28413 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝐵) = (𝐷 𝑑))
791, 44, 2, 30, 31, 40, 32, 35, 38, 34, 73, 57, 75, 78tgcgrextend 28419 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐵) = (𝐸 𝑑))
801, 44, 2, 30, 31, 32, 35, 34, 79tgcgrcoml 28413 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑎) = (𝐸 𝑑))
811, 44, 2, 30, 32, 39, 33, 50tgbtwncom 28422 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝑐𝐼𝐵))
8228simprrd 773 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝑐) = (𝐸 𝐹))
831, 44, 2, 30, 39, 33, 35, 37, 82tgcgrcoml 28413 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐶) = (𝐸 𝐹))
8429simprrd 773 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐹 𝑓) = (𝐵 𝐶))
8584eqcomd 2736 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐶) = (𝐹 𝑓))
861, 44, 2, 30, 32, 39, 37, 36, 85tgcgrcoml 28413 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝐵) = (𝐹 𝑓))
871, 44, 2, 30, 33, 39, 32, 35, 37, 36, 81, 63, 83, 86tgcgrextend 28419 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐵) = (𝐸 𝑓))
881, 44, 2, 30, 33, 32, 35, 36, 87tgcgrcoml 28413 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑐) = (𝐸 𝑓))
891, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68, 31, 44, 33, 70, 72, 80, 88cgracgr 28752 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝑐) = (𝑑 𝑓))
9028, 29, 893jca 1128 . . . . . . . 8 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
9190ex 412 . . . . . . 7 ((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9291reximdva 3147 . . . . . 6 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) → (∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9392reximdva 3147 . . . . 5 ((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9493imp 406 . . . 4 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
951, 44, 2, 4, 8, 6, 14, 12axtgsegcon 28398 . . . . . . . 8 (𝜑 → ∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)))
961, 44, 2, 4, 8, 10, 14, 16axtgsegcon 28398 . . . . . . . 8 (𝜑 → ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))
97 reeanv 3210 . . . . . . . 8 (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ (∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
9895, 96, 97sylanbrc 583 . . . . . . 7 (𝜑 → ∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
991, 44, 2, 4, 14, 12, 8, 6axtgsegcon 28398 . . . . . . . 8 (𝜑 → ∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)))
1001, 44, 2, 4, 14, 16, 8, 10axtgsegcon 28398 . . . . . . . 8 (𝜑 → ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))
101 reeanv 3210 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ (∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10299, 100, 101sylanbrc 583 . . . . . . 7 (𝜑 → ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10398, 102jca 511 . . . . . 6 (𝜑 → (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
104 r19.41vv 3208 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
105 ancom 460 . . . . . . . . . 10 ((((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1061052rexbii 3110 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
107 ancom 460 . . . . . . . . 9 ((∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
108104, 106, 1073bitr3i 301 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1091082rexbii 3110 . . . . . . 7 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
110 r19.41vv 3208 . . . . . . 7 (∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
111109, 110bitr2i 276 . . . . . 6 ((∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
112103, 111sylib 218 . . . . 5 (𝜑 → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
113112adantr 480 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
11494, 113reximddv2 3197 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
11522, 27, 1143jca 1128 . 2 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
116 df-3an 1088 . . 3 (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ↔ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
1174ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐺 ∈ TarskiG)
11812ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝑃)
11914ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑃)
12016ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝑃)
1216ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝑃)
1228ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑃)
12310ad6antr 736 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝑃)
124 simp-4r 783 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑦𝑃)
125 simp-5r 785 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑥𝑃)
126 simpllr 775 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧𝑃)
127 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡𝑃)
128 eqid 2730 . . . . . . . . . . . . . 14 (cgrG‘𝐺) = (cgrG‘𝐺)
129 simpr1 1195 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
130129simplld 767 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴 ∈ (𝐵𝐼𝑥))
131 simpr2 1196 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
132131simplld 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝐸𝐼𝑧))
1331, 44, 2, 117, 119, 118, 126, 132tgbtwncom 28422 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝑧𝐼𝐸))
134131simplrd 769 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐷 𝑧) = (𝐵 𝐴))
135134eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝐷 𝑧))
1361, 44, 2, 117, 122, 121, 118, 126, 135tgcgrcomr 28412 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝑧 𝐷))
137129simplrd 769 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐸 𝐷))
1381, 44, 2, 117, 121, 125, 119, 118, 137tgcgrcomr 28412 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐷 𝐸))
1391, 44, 2, 117, 122, 121, 125, 126, 118, 119, 130, 133, 136, 138tgcgrextend 28419 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑥) = (𝑧 𝐸))
1401, 44, 2, 117, 122, 125, 126, 119, 139tgcgrcoml 28413 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝐵) = (𝑧 𝐸))
141129simprld 771 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝐵𝐼𝑦))
1421, 44, 2, 117, 122, 123, 124, 141tgbtwncom 28422 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝑦𝐼𝐵))
143131simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹 ∈ (𝐸𝐼𝑡))
144129simprrd 773 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝑦) = (𝐸 𝐹))
1451, 44, 2, 117, 123, 124, 119, 120, 144tgcgrcoml 28413 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐶) = (𝐸 𝐹))
146131simprrd 773 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐹 𝑡) = (𝐵 𝐶))
147146eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐶) = (𝐹 𝑡))
1481, 44, 2, 117, 122, 123, 120, 127, 147tgcgrcoml 28413 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝐵) = (𝐹 𝑡))
1491, 44, 2, 117, 124, 123, 122, 119, 120, 127, 142, 143, 145, 148tgcgrextend 28419 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐵) = (𝐸 𝑡))
1501, 44, 2, 117, 124, 122, 119, 127, 149tgcgrcoml 28413 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑦) = (𝐸 𝑡))
151 simpr3 1197 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝑦) = (𝑧 𝑡))
1521, 44, 2, 117, 125, 124, 126, 127, 151tgcgrcomlr 28414 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝑥) = (𝑡 𝑧))
1531, 44, 128, 117, 125, 122, 124, 126, 119, 127, 140, 150, 152trgcgr 28450 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrG‘𝐺)⟨“𝑧𝐸𝑡”⟩)
154 simp-6r 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)))
155154simprld 771 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝐸)
1561, 44, 2, 117, 119, 118, 126, 132, 155tgbtwnne 28424 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑧)
1571, 2, 3, 119, 126, 118, 117, 122, 132, 156, 155btwnhl1 28546 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷((hlG‘𝐺)‘𝐸)𝑧)
1581, 2, 3, 118, 126, 119, 117, 157hlcomd 28538 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧((hlG‘𝐺)‘𝐸)𝐷)
159154simprrd 773 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝐸)
1601, 44, 2, 117, 119, 120, 127, 143, 159tgbtwnne 28424 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑡)
1611, 2, 3, 119, 127, 120, 117, 122, 143, 160, 159btwnhl1 28546 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹((hlG‘𝐺)‘𝐸)𝑡)
1621, 2, 3, 120, 127, 119, 117, 161hlcomd 28538 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡((hlG‘𝐺)‘𝐸)𝐹)
1631, 2, 3, 117, 125, 122, 124, 118, 119, 120, 126, 127, 153, 158, 162iscgrad 28745 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1641, 2, 117, 3, 125, 122, 124, 118, 119, 120, 163cgracom 28756 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝐵𝑦”⟩)
165154simplld 767 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝐵)
1661, 44, 2, 117, 122, 121, 125, 130, 165tgbtwnne 28424 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑥)
1671, 2, 3, 122, 125, 121, 117, 121, 130, 166, 165btwnhl1 28546 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴((hlG‘𝐺)‘𝐵)𝑥)
1681, 2, 3, 117, 118, 119, 120, 125, 122, 124, 164, 121, 167cgrahl1 28750 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝑦”⟩)
169154simplrd 769 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝐵)
1701, 44, 2, 117, 122, 123, 124, 141, 169tgbtwnne 28424 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑦)
1711, 2, 3, 122, 124, 123, 117, 121, 141, 170, 169btwnhl1 28546 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶((hlG‘𝐺)‘𝐵)𝑦)
1721, 2, 3, 117, 118, 119, 120, 121, 122, 124, 168, 123, 171cgrahl2 28751 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1731, 2, 117, 3, 118, 119, 120, 121, 122, 123, 172cgracom 28756 . . . . . . . 8 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
174173adantl3r 750 . . . . . . 7 ((((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
175 simpr 484 . . . . . . . 8 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
176 oveq2 7398 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐸𝐼𝑑) = (𝐸𝐼𝑧))
177176eleq2d 2815 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝐷 ∈ (𝐸𝐼𝑑) ↔ 𝐷 ∈ (𝐸𝐼𝑧)))
178 oveq2 7398 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐷 𝑑) = (𝐷 𝑧))
179178eqeq1d 2732 . . . . . . . . . . . 12 (𝑑 = 𝑧 → ((𝐷 𝑑) = (𝐵 𝐴) ↔ (𝐷 𝑧) = (𝐵 𝐴)))
180177, 179anbi12d 632 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
181180anbi1d 631 . . . . . . . . . 10 (𝑑 = 𝑧 → (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
182 oveq1 7397 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑑 𝑓) = (𝑧 𝑓))
183182eqeq2d 2741 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑥 𝑦) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑓)))
184181, 1833anbi23d 1441 . . . . . . . . 9 (𝑑 = 𝑧 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓))))
185 oveq2 7398 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐸𝐼𝑓) = (𝐸𝐼𝑡))
186185eleq2d 2815 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝐹 ∈ (𝐸𝐼𝑓) ↔ 𝐹 ∈ (𝐸𝐼𝑡)))
187 oveq2 7398 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐹 𝑓) = (𝐹 𝑡))
188187eqeq1d 2732 . . . . . . . . . . . 12 (𝑓 = 𝑡 → ((𝐹 𝑓) = (𝐵 𝐶) ↔ (𝐹 𝑡) = (𝐵 𝐶)))
189186, 188anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
190189anbi2d 630 . . . . . . . . . 10 (𝑓 = 𝑡 → (((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶)))))
191 oveq2 7398 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑧 𝑓) = (𝑧 𝑡))
192191eqeq2d 2741 . . . . . . . . . 10 (𝑓 = 𝑡 → ((𝑥 𝑦) = (𝑧 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑡)))
193190, 1923anbi23d 1441 . . . . . . . . 9 (𝑓 = 𝑡 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))))
194184, 193cbvrex2vw 3221 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
195175, 194sylib 218 . . . . . . 7 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
196174, 195r19.29vva 3198 . . . . . 6 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
197196adantl3r 750 . . . . 5 ((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
198 simpr 484 . . . . . 6 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
199 oveq2 7398 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐵𝐼𝑎) = (𝐵𝐼𝑥))
200199eleq2d 2815 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐴 ∈ (𝐵𝐼𝑎) ↔ 𝐴 ∈ (𝐵𝐼𝑥)))
201 oveq2 7398 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐴 𝑎) = (𝐴 𝑥))
202201eqeq1d 2732 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐴 𝑎) = (𝐸 𝐷) ↔ (𝐴 𝑥) = (𝐸 𝐷)))
203200, 202anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
204203anbi1d 631 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
205 oveq1 7397 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 𝑐) = (𝑥 𝑐))
206205eqeq1d 2732 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑐) = (𝑑 𝑓)))
207204, 2063anbi13d 1440 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
2082072rexbidv 3203 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
209 oveq2 7398 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐵𝐼𝑐) = (𝐵𝐼𝑦))
210209eleq2d 2815 . . . . . . . . . . 11 (𝑐 = 𝑦 → (𝐶 ∈ (𝐵𝐼𝑐) ↔ 𝐶 ∈ (𝐵𝐼𝑦)))
211 oveq2 7398 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐶 𝑐) = (𝐶 𝑦))
212211eqeq1d 2732 . . . . . . . . . . 11 (𝑐 = 𝑦 → ((𝐶 𝑐) = (𝐸 𝐹) ↔ (𝐶 𝑦) = (𝐸 𝐹)))
213210, 212anbi12d 632 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
214213anbi2d 630 . . . . . . . . 9 (𝑐 = 𝑦 → (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹)))))
215 oveq2 7398 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑥 𝑐) = (𝑥 𝑦))
216215eqeq1d 2732 . . . . . . . . 9 (𝑐 = 𝑦 → ((𝑥 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑑 𝑓)))
217214, 2163anbi13d 1440 . . . . . . . 8 (𝑐 = 𝑦 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
2182172rexbidv 3203 . . . . . . 7 (𝑐 = 𝑦 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
219208, 218cbvrex2vw 3221 . . . . . 6 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
220198, 219sylib 218 . . . . 5 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
221197, 220r19.29vva 3198 . . . 4 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
222221anasss 466 . . 3 ((𝜑 ∧ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
223116, 222sylan2b 594 . 2 ((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
224115, 223impbida 800 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  cgrGccgrg 28444  hlGchlg 28534  cgrAccgra 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-hlg 28535  df-cgra 28742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator