Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmo4f | Structured version Visualization version GIF version |
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
rmo4f.1 | ⊢ Ⅎ𝑥𝐴 |
rmo4f.2 | ⊢ Ⅎ𝑦𝐴 |
rmo4f.3 | ⊢ Ⅎ𝑥𝜓 |
rmo4f.4 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rmo4f | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmo4f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | rmo4f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
4 | 1, 2, 3 | rmo3f 3669 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
5 | rmo4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
6 | rmo4f.4 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | sbiev 2309 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
8 | 7 | anbi2i 623 | . . . 4 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓)) |
9 | 8 | imbi1i 350 | . . 3 ⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
10 | 9 | 2ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
11 | 4, 10 | bitri 274 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1786 [wsb 2067 Ⅎwnfc 2887 ∀wral 3064 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clel 2816 df-nfc 2889 df-ral 3069 df-rmo 3071 |
This theorem is referenced by: 2sqreulem4 26602 disjorf 30918 funcnv5mpt 31005 |
Copyright terms: Public domain | W3C validator |