MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo4f Structured version   Visualization version   GIF version

Theorem rmo4f 3665
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo4f.1 𝑥𝐴
rmo4f.2 𝑦𝐴
rmo4f.3 𝑥𝜓
rmo4f.4 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4f (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem rmo4f
StepHypRef Expression
1 rmo4f.1 . . 3 𝑥𝐴
2 rmo4f.2 . . 3 𝑦𝐴
3 nfv 1918 . . 3 𝑦𝜑
41, 2, 3rmo3f 3664 . 2 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
5 rmo4f.3 . . . . . 6 𝑥𝜓
6 rmo4f.4 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
75, 6sbiev 2312 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
87anbi2i 622 . . . 4 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓))
98imbi1i 349 . . 3 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝑦))
1092ralbii 3091 . 2 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
114, 10bitri 274 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1787  [wsb 2068  wnfc 2886  wral 3063  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clel 2817  df-nfc 2888  df-ral 3068  df-rmo 3071
This theorem is referenced by:  2sqreulem4  26507  disjorf  30819  funcnv5mpt  30907
  Copyright terms: Public domain W3C validator