Step | Hyp | Ref
| Expression |
1 | | reu2eqd.6 |
. 2
⊢ (𝜑 → 𝜒) |
2 | | reu2eqd.7 |
. 2
⊢ (𝜑 → 𝜃) |
3 | | reu2eqd.3 |
. . . . 5
⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) |
4 | | reu2 3655 |
. . . . 5
⊢
(∃!𝑥 ∈
𝐴 𝜓 ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
5 | 3, 4 | sylib 217 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
6 | 5 | simprd 495 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
7 | | reu2eqd.4 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
8 | | reu2eqd.5 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
9 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥𝜒 |
10 | | nfs1v 2155 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜓 |
11 | 9, 10 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑥(𝜒 ∧ [𝑦 / 𝑥]𝜓) |
12 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥 𝐵 = 𝑦 |
13 | 11, 12 | nfim 1900 |
. . . . 5
⊢
Ⅎ𝑥((𝜒 ∧ [𝑦 / 𝑥]𝜓) → 𝐵 = 𝑦) |
14 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑦((𝜒 ∧ 𝜃) → 𝐵 = 𝐶) |
15 | | reu2eqd.1 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
16 | 15 | anbi1d 629 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) ↔ (𝜒 ∧ [𝑦 / 𝑥]𝜓))) |
17 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥 = 𝑦 ↔ 𝐵 = 𝑦)) |
18 | 16, 17 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐵 → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) ↔ ((𝜒 ∧ [𝑦 / 𝑥]𝜓) → 𝐵 = 𝑦))) |
19 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜃 |
20 | | reu2eqd.2 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜃)) |
21 | 19, 20 | sbhypf 3481 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → ([𝑦 / 𝑥]𝜓 ↔ 𝜃)) |
22 | 21 | anbi2d 628 |
. . . . . 6
⊢ (𝑦 = 𝐶 → ((𝜒 ∧ [𝑦 / 𝑥]𝜓) ↔ (𝜒 ∧ 𝜃))) |
23 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐶)) |
24 | 22, 23 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝐶 → (((𝜒 ∧ [𝑦 / 𝑥]𝜓) → 𝐵 = 𝑦) ↔ ((𝜒 ∧ 𝜃) → 𝐵 = 𝐶))) |
25 | 13, 14, 18, 24 | rspc2 3560 |
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜒 ∧ 𝜃) → 𝐵 = 𝐶))) |
26 | 7, 8, 25 | syl2anc 583 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜒 ∧ 𝜃) → 𝐵 = 𝐶))) |
27 | 6, 26 | mpd 15 |
. 2
⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝐵 = 𝐶)) |
28 | 1, 2, 27 | mp2and 695 |
1
⊢ (𝜑 → 𝐵 = 𝐶) |