Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv5mpt Structured version   Visualization version   GIF version

Theorem funcnv5mpt 30907
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
funcnv5mpt.1 (𝑥 = 𝑧𝐵 = 𝐶)
Assertion
Ref Expression
funcnv5mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem funcnv5mpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funcnvmpt.0 . . 3 𝑥𝜑
2 funcnvmpt.1 . . 3 𝑥𝐴
3 funcnvmpt.2 . . 3 𝑥𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
61, 2, 3, 4, 5funcnvmpt 30906 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
7 nne 2946 . . . . . . . . 9 𝐵𝐶𝐵 = 𝐶)
8 eqvincg 3570 . . . . . . . . . 10 (𝐵𝑉 → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
95, 8syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
107, 9syl5bb 282 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
1110imbi1d 341 . . . . . . 7 ((𝜑𝑥𝐴) → ((¬ 𝐵𝐶𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
12 orcom 866 . . . . . . . 8 ((𝑥 = 𝑧𝐵𝐶) ↔ (𝐵𝐶𝑥 = 𝑧))
13 df-or 844 . . . . . . . 8 ((𝐵𝐶𝑥 = 𝑧) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
1412, 13bitri 274 . . . . . . 7 ((𝑥 = 𝑧𝐵𝐶) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
15 19.23v 1946 . . . . . . 7 (∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1611, 14, 153bitr4g 313 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
1716ralbidv 3120 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
18 ralcom4 3161 . . . . 5 (∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1917, 18bitrdi 286 . . . 4 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
201, 19ralbida 3156 . . 3 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
21 nfcv 2906 . . . . . 6 𝑧𝐴
22 nfv 1918 . . . . . 6 𝑥 𝑦 = 𝐶
23 funcnv5mpt.1 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐶)
2423eqeq2d 2749 . . . . . 6 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝐶))
252, 21, 22, 24rmo4f 3665 . . . . 5 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2625albii 1823 . . . 4 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
27 ralcom4 3161 . . . 4 (∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2826, 27bitr4i 277 . . 3 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2920, 28bitr4di 288 . 2 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
306, 29bitr4d 281 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  wne 2942  wral 3063  ∃*wrmo 3066  cmpt 5153  ccnv 5579  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  funcnv4mpt  30908
  Copyright terms: Public domain W3C validator