Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv5mpt Structured version   Visualization version   GIF version

Theorem funcnv5mpt 32499
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
funcnv5mpt.1 (𝑥 = 𝑧𝐵 = 𝐶)
Assertion
Ref Expression
funcnv5mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem funcnv5mpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funcnvmpt.0 . . 3 𝑥𝜑
2 funcnvmpt.1 . . 3 𝑥𝐴
3 funcnvmpt.2 . . 3 𝑥𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
61, 2, 3, 4, 5funcnvmpt 32498 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
7 nne 2934 . . . . . . . . 9 𝐵𝐶𝐵 = 𝐶)
8 eqvincg 3626 . . . . . . . . . 10 (𝐵𝑉 → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
95, 8syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
107, 9bitrid 282 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
1110imbi1d 340 . . . . . . 7 ((𝜑𝑥𝐴) → ((¬ 𝐵𝐶𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
12 orcom 868 . . . . . . . 8 ((𝑥 = 𝑧𝐵𝐶) ↔ (𝐵𝐶𝑥 = 𝑧))
13 df-or 846 . . . . . . . 8 ((𝐵𝐶𝑥 = 𝑧) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
1412, 13bitri 274 . . . . . . 7 ((𝑥 = 𝑧𝐵𝐶) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
15 19.23v 1937 . . . . . . 7 (∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1611, 14, 153bitr4g 313 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
1716ralbidv 3168 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
18 ralcom4 3274 . . . . 5 (∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1917, 18bitrdi 286 . . . 4 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
201, 19ralbida 3258 . . 3 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
21 nfcv 2892 . . . . . 6 𝑧𝐴
22 nfv 1909 . . . . . 6 𝑥 𝑦 = 𝐶
23 funcnv5mpt.1 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐶)
2423eqeq2d 2736 . . . . . 6 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝐶))
252, 21, 22, 24rmo4f 3722 . . . . 5 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2625albii 1813 . . . 4 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
27 ralcom4 3274 . . . 4 (∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2826, 27bitr4i 277 . . 3 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2920, 28bitr4di 288 . 2 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
306, 29bitr4d 281 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  wal 1531   = wceq 1533  wex 1773  wnf 1777  wcel 2098  wnfc 2875  wne 2930  wral 3051  ∃*wrmo 3363  cmpt 5226  ccnv 5671  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  funcnv4mpt  32500
  Copyright terms: Public domain W3C validator