Step | Hyp | Ref
| Expression |
1 | | funcnvmpt.0 |
. . 3
⊢
Ⅎ𝑥𝜑 |
2 | | funcnvmpt.1 |
. . 3
⊢
Ⅎ𝑥𝐴 |
3 | | funcnvmpt.2 |
. . 3
⊢
Ⅎ𝑥𝐹 |
4 | | funcnvmpt.3 |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | | funcnvmpt.4 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
6 | 1, 2, 3, 4, 5 | funcnvmpt 30906 |
. 2
⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
7 | | nne 2946 |
. . . . . . . . 9
⊢ (¬
𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) |
8 | | eqvincg 3570 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑉 → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 = 𝐶))) |
9 | 5, 8 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 = 𝐶))) |
10 | 7, 9 | syl5bb 282 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝐵 ≠ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 = 𝐶))) |
11 | 10 | imbi1d 341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧))) |
12 | | orcom 866 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ (𝐵 ≠ 𝐶 ∨ 𝑥 = 𝑧)) |
13 | | df-or 844 |
. . . . . . . 8
⊢ ((𝐵 ≠ 𝐶 ∨ 𝑥 = 𝑧) ↔ (¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧)) |
14 | 12, 13 | bitri 274 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ (¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧)) |
15 | | 19.23v 1946 |
. . . . . . 7
⊢
(∀𝑦((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
16 | 11, 14, 15 | 3bitr4g 313 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ ∀𝑦((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧))) |
17 | 16 | ralbidv 3120 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧))) |
18 | | ralcom4 3161 |
. . . . 5
⊢
(∀𝑧 ∈
𝐴 ∀𝑦((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
19 | 17, 18 | bitrdi 286 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ ∀𝑦∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧))) |
20 | 1, 19 | ralbida 3156 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧))) |
21 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑧𝐴 |
22 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 = 𝐶 |
23 | | funcnv5mpt.1 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → 𝐵 = 𝐶) |
24 | 23 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
25 | 2, 21, 22, 24 | rmo4f 3665 |
. . . . 5
⊢
(∃*𝑥 ∈
𝐴 𝑦 = 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
26 | 25 | albii 1823 |
. . . 4
⊢
(∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
27 | | ralcom4 3161 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
28 | 26, 27 | bitr4i 277 |
. . 3
⊢
(∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧 ∈ 𝐴 ((𝑦 = 𝐵 ∧ 𝑦 = 𝐶) → 𝑥 = 𝑧)) |
29 | 20, 28 | bitr4di 288 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶) ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
30 | 6, 29 | bitr4d 281 |
1
⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶))) |