Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem1 Structured version   Visualization version   GIF version

Theorem opnvonmbllem1 42379
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem1.i 𝑖𝜑
opnvonmbllem1.x (𝜑𝑋𝑉)
opnvonmbllem1.c (𝜑𝐶:𝑋⟶ℚ)
opnvonmbllem1.d (𝜑𝐷:𝑋⟶ℚ)
opnvonmbllem1.s (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
opnvonmbllem1.g (𝜑𝐵𝐺)
opnvonmbllem1.y (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
opnvonmbllem1.k 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
opnvonmbllem1.h 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
Assertion
Ref Expression
opnvonmbllem1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Distinct variable groups:   ,𝐺   ,𝐻   ,𝑋,𝑖   ,𝑌
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝐷(,𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐾(,𝑖)   𝑉(,𝑖)   𝑌(𝑖)

Proof of Theorem opnvonmbllem1
StepHypRef Expression
1 opnvonmbllem1.i . . . . . 6 𝑖𝜑
2 opnvonmbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℚ)
32ffvelrnda 6674 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℚ)
4 opnvonmbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℚ)
54ffvelrnda 6674 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℚ)
6 opelxpi 5440 . . . . . . 7 (((𝐶𝑖) ∈ ℚ ∧ (𝐷𝑖) ∈ ℚ) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
73, 5, 6syl2anc 576 . . . . . 6 ((𝜑𝑖𝑋) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
8 opnvonmbllem1.h . . . . . 6 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
91, 7, 8fmptdf 6702 . . . . 5 (𝜑𝐻:𝑋⟶(ℚ × ℚ))
10 qex 12173 . . . . . . . . 9 ℚ ∈ V
1110, 10xpex 7291 . . . . . . . 8 (ℚ × ℚ) ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → (ℚ × ℚ) ∈ V)
13 opnvonmbllem1.x . . . . . . 7 (𝜑𝑋𝑉)
1412, 13jca 504 . . . . . 6 (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋𝑉))
15 elmapg 8217 . . . . . 6 (((ℚ × ℚ) ∈ V ∧ 𝑋𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
179, 16mpbird 249 . . . 4 (𝜑𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋))
181, 8hoi2toco 42354 . . . . 5 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
19 opnvonmbllem1.s . . . . . 6 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
20 opnvonmbllem1.g . . . . . 6 (𝜑𝐵𝐺)
2119, 20sstrd 3861 . . . . 5 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐺)
2218, 21eqsstrd 3888 . . . 4 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)
2317, 22jca 504 . . 3 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
24 nfcv 2925 . . . . . . 7 𝑖
25 nfmpt1 5021 . . . . . . . 8 𝑖(𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
268, 25nfcxfr 2923 . . . . . . 7 𝑖𝐻
2724, 26nfeq 2936 . . . . . 6 𝑖 = 𝐻
28 coeq2 5575 . . . . . . . 8 ( = 𝐻 → ([,) ∘ ) = ([,) ∘ 𝐻))
2928fveq1d 6498 . . . . . . 7 ( = 𝐻 → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3029adantr 473 . . . . . 6 (( = 𝐻𝑖𝑋) → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3127, 30ixpeq2d 40787 . . . . 5 ( = 𝐻X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
3231sseq1d 3881 . . . 4 ( = 𝐻 → (X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
33 opnvonmbllem1.k . . . 4 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
3432, 33elrab2 3592 . . 3 (𝐻𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
3523, 34sylibr 226 . 2 (𝜑𝐻𝐾)
36 opnvonmbllem1.y . . 3 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
3736, 18eleqtrrd 2862 . 2 (𝜑𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
38 nfv 1874 . . 3 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)
39 nfcv 2925 . . 3 𝐻
40 nfrab1 3317 . . . 4 { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
4133, 40nfcxfr 2923 . . 3 𝐾
4231eleq2d 2844 . . 3 ( = 𝐻 → (𝑌X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)))
4338, 39, 41, 42rspcef 40791 . 2 ((𝐻𝐾𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
4435, 37, 43syl2anc 576 1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wnf 1747  wcel 2051  wrex 3082  {crab 3085  Vcvv 3408  wss 3822  cop 4441  cmpt 5004   × cxp 5401  ccom 5407  wf 6181  cfv 6185  (class class class)co 6974  𝑚 cmap 8204  Xcixp 8257  cq 12160  [,)cico 12554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-map 8206  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-z 11792  df-q 12161
This theorem is referenced by:  opnvonmbllem2  42380
  Copyright terms: Public domain W3C validator