| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnvonmbllem1 | Structured version Visualization version GIF version | ||
| Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| opnvonmbllem1.i | ⊢ Ⅎ𝑖𝜑 |
| opnvonmbllem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| opnvonmbllem1.c | ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) |
| opnvonmbllem1.d | ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) |
| opnvonmbllem1.s | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) |
| opnvonmbllem1.g | ⊢ (𝜑 → 𝐵 ⊆ 𝐺) |
| opnvonmbllem1.y | ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
| opnvonmbllem1.k | ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
| opnvonmbllem1.h | ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) |
| Ref | Expression |
|---|---|
| opnvonmbllem1 | ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnvonmbllem1.i | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
| 2 | opnvonmbllem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) | |
| 3 | 2 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ ℚ) |
| 4 | opnvonmbllem1.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) | |
| 5 | 4 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ℚ) |
| 6 | opelxpi 5651 | . . . . . . 7 ⊢ (((𝐶‘𝑖) ∈ ℚ ∧ (𝐷‘𝑖) ∈ ℚ) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) |
| 8 | opnvonmbllem1.h | . . . . . 6 ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
| 9 | 1, 7, 8 | fmptdf 7050 | . . . . 5 ⊢ (𝜑 → 𝐻:𝑋⟶(ℚ × ℚ)) |
| 10 | qex 12859 | . . . . . . . . 9 ⊢ ℚ ∈ V | |
| 11 | 10, 10 | xpex 7686 | . . . . . . . 8 ⊢ (ℚ × ℚ) ∈ V |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (ℚ × ℚ) ∈ V) |
| 13 | opnvonmbllem1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | 12, 13 | jca 511 | . . . . . 6 ⊢ (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉)) |
| 15 | elmapg 8763 | . . . . . 6 ⊢ (((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) |
| 17 | 9, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋)) |
| 18 | 1, 8 | hoi2toco 46715 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
| 19 | opnvonmbllem1.s | . . . . . 6 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) | |
| 20 | opnvonmbllem1.g | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐺) | |
| 21 | 19, 20 | sstrd 3940 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐺) |
| 22 | 18, 21 | eqsstrd 3964 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺) |
| 23 | 17, 22 | jca 511 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 24 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑖ℎ | |
| 25 | nfmpt1 5188 | . . . . . . . 8 ⊢ Ⅎ𝑖(𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
| 26 | 8, 25 | nfcxfr 2892 | . . . . . . 7 ⊢ Ⅎ𝑖𝐻 |
| 27 | 24, 26 | nfeq 2908 | . . . . . 6 ⊢ Ⅎ𝑖 ℎ = 𝐻 |
| 28 | coeq2 5797 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → ([,) ∘ ℎ) = ([,) ∘ 𝐻)) | |
| 29 | 28 | fveq1d 6824 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
| 30 | 29 | adantr 480 | . . . . . 6 ⊢ ((ℎ = 𝐻 ∧ 𝑖 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
| 31 | 27, 30 | ixpeq2d 45175 | . . . . 5 ⊢ (ℎ = 𝐻 → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) = X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
| 32 | 31 | sseq1d 3961 | . . . 4 ⊢ (ℎ = 𝐻 → (X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺 ↔ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 33 | opnvonmbllem1.k | . . . 4 ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
| 34 | 32, 33 | elrab2 3645 | . . 3 ⊢ (𝐻 ∈ 𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 35 | 23, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝐾) |
| 36 | opnvonmbllem1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) | |
| 37 | 36, 18 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
| 38 | nfv 1915 | . . 3 ⊢ Ⅎℎ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) | |
| 39 | nfcv 2894 | . . 3 ⊢ Ⅎℎ𝐻 | |
| 40 | nfrab1 3415 | . . . 4 ⊢ Ⅎℎ{ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
| 41 | 33, 40 | nfcxfr 2892 | . . 3 ⊢ Ⅎℎ𝐾 |
| 42 | 31 | eleq2d 2817 | . . 3 ⊢ (ℎ = 𝐻 → (𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ↔ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖))) |
| 43 | 38, 39, 41, 42 | rspcef 45179 | . 2 ⊢ ((𝐻 ∈ 𝐾 ∧ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| 44 | 35, 37, 43 | syl2anc 584 | 1 ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 〈cop 4579 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Xcixp 8821 ℚcq 12846 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-z 12469 df-q 12847 |
| This theorem is referenced by: opnvonmbllem2 46741 |
| Copyright terms: Public domain | W3C validator |