| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnvonmbllem1 | Structured version Visualization version GIF version | ||
| Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| opnvonmbllem1.i | ⊢ Ⅎ𝑖𝜑 |
| opnvonmbllem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| opnvonmbllem1.c | ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) |
| opnvonmbllem1.d | ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) |
| opnvonmbllem1.s | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) |
| opnvonmbllem1.g | ⊢ (𝜑 → 𝐵 ⊆ 𝐺) |
| opnvonmbllem1.y | ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
| opnvonmbllem1.k | ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
| opnvonmbllem1.h | ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) |
| Ref | Expression |
|---|---|
| opnvonmbllem1 | ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opnvonmbllem1.i | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
| 2 | opnvonmbllem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) | |
| 3 | 2 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ ℚ) |
| 4 | opnvonmbllem1.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) | |
| 5 | 4 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ℚ) |
| 6 | opelxpi 5678 | . . . . . . 7 ⊢ (((𝐶‘𝑖) ∈ ℚ ∧ (𝐷‘𝑖) ∈ ℚ) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) |
| 8 | opnvonmbllem1.h | . . . . . 6 ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
| 9 | 1, 7, 8 | fmptdf 7092 | . . . . 5 ⊢ (𝜑 → 𝐻:𝑋⟶(ℚ × ℚ)) |
| 10 | qex 12927 | . . . . . . . . 9 ⊢ ℚ ∈ V | |
| 11 | 10, 10 | xpex 7732 | . . . . . . . 8 ⊢ (ℚ × ℚ) ∈ V |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (ℚ × ℚ) ∈ V) |
| 13 | opnvonmbllem1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | 12, 13 | jca 511 | . . . . . 6 ⊢ (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉)) |
| 15 | elmapg 8815 | . . . . . 6 ⊢ (((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) |
| 17 | 9, 16 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋)) |
| 18 | 1, 8 | hoi2toco 46612 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
| 19 | opnvonmbllem1.s | . . . . . 6 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) | |
| 20 | opnvonmbllem1.g | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐺) | |
| 21 | 19, 20 | sstrd 3960 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐺) |
| 22 | 18, 21 | eqsstrd 3984 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺) |
| 23 | 17, 22 | jca 511 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 24 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑖ℎ | |
| 25 | nfmpt1 5209 | . . . . . . . 8 ⊢ Ⅎ𝑖(𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
| 26 | 8, 25 | nfcxfr 2890 | . . . . . . 7 ⊢ Ⅎ𝑖𝐻 |
| 27 | 24, 26 | nfeq 2906 | . . . . . 6 ⊢ Ⅎ𝑖 ℎ = 𝐻 |
| 28 | coeq2 5825 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → ([,) ∘ ℎ) = ([,) ∘ 𝐻)) | |
| 29 | 28 | fveq1d 6863 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
| 30 | 29 | adantr 480 | . . . . . 6 ⊢ ((ℎ = 𝐻 ∧ 𝑖 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
| 31 | 27, 30 | ixpeq2d 45069 | . . . . 5 ⊢ (ℎ = 𝐻 → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) = X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
| 32 | 31 | sseq1d 3981 | . . . 4 ⊢ (ℎ = 𝐻 → (X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺 ↔ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 33 | opnvonmbllem1.k | . . . 4 ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
| 34 | 32, 33 | elrab2 3665 | . . 3 ⊢ (𝐻 ∈ 𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
| 35 | 23, 34 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝐾) |
| 36 | opnvonmbllem1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) | |
| 37 | 36, 18 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
| 38 | nfv 1914 | . . 3 ⊢ Ⅎℎ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) | |
| 39 | nfcv 2892 | . . 3 ⊢ Ⅎℎ𝐻 | |
| 40 | nfrab1 3429 | . . . 4 ⊢ Ⅎℎ{ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
| 41 | 33, 40 | nfcxfr 2890 | . . 3 ⊢ Ⅎℎ𝐾 |
| 42 | 31 | eleq2d 2815 | . . 3 ⊢ (ℎ = 𝐻 → (𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ↔ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖))) |
| 43 | 38, 39, 41, 42 | rspcef 45073 | . 2 ⊢ ((𝐻 ∈ 𝐾 ∧ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| 44 | 35, 37, 43 | syl2anc 584 | 1 ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 〈cop 4598 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Xcixp 8873 ℚcq 12914 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-z 12537 df-q 12915 |
| This theorem is referenced by: opnvonmbllem2 46638 |
| Copyright terms: Public domain | W3C validator |