Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnvonmbllem1 | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
opnvonmbllem1.i | ⊢ Ⅎ𝑖𝜑 |
opnvonmbllem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
opnvonmbllem1.c | ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) |
opnvonmbllem1.d | ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) |
opnvonmbllem1.s | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) |
opnvonmbllem1.g | ⊢ (𝜑 → 𝐵 ⊆ 𝐺) |
opnvonmbllem1.y | ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
opnvonmbllem1.k | ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
opnvonmbllem1.h | ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) |
Ref | Expression |
---|---|
opnvonmbllem1 | ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnvonmbllem1.i | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
2 | opnvonmbllem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) | |
3 | 2 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ ℚ) |
4 | opnvonmbllem1.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) | |
5 | 4 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ℚ) |
6 | opelxpi 5617 | . . . . . . 7 ⊢ (((𝐶‘𝑖) ∈ ℚ ∧ (𝐷‘𝑖) ∈ ℚ) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) | |
7 | 3, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) |
8 | opnvonmbllem1.h | . . . . . 6 ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
9 | 1, 7, 8 | fmptdf 6973 | . . . . 5 ⊢ (𝜑 → 𝐻:𝑋⟶(ℚ × ℚ)) |
10 | qex 12630 | . . . . . . . . 9 ⊢ ℚ ∈ V | |
11 | 10, 10 | xpex 7581 | . . . . . . . 8 ⊢ (ℚ × ℚ) ∈ V |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (ℚ × ℚ) ∈ V) |
13 | opnvonmbllem1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | 12, 13 | jca 511 | . . . . . 6 ⊢ (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉)) |
15 | elmapg 8586 | . . . . . 6 ⊢ (((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) |
17 | 9, 16 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋)) |
18 | 1, 8 | hoi2toco 44035 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
19 | opnvonmbllem1.s | . . . . . 6 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) | |
20 | opnvonmbllem1.g | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐺) | |
21 | 19, 20 | sstrd 3927 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐺) |
22 | 18, 21 | eqsstrd 3955 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺) |
23 | 17, 22 | jca 511 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
24 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑖ℎ | |
25 | nfmpt1 5178 | . . . . . . . 8 ⊢ Ⅎ𝑖(𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
26 | 8, 25 | nfcxfr 2904 | . . . . . . 7 ⊢ Ⅎ𝑖𝐻 |
27 | 24, 26 | nfeq 2919 | . . . . . 6 ⊢ Ⅎ𝑖 ℎ = 𝐻 |
28 | coeq2 5756 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → ([,) ∘ ℎ) = ([,) ∘ 𝐻)) | |
29 | 28 | fveq1d 6758 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
30 | 29 | adantr 480 | . . . . . 6 ⊢ ((ℎ = 𝐻 ∧ 𝑖 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
31 | 27, 30 | ixpeq2d 42505 | . . . . 5 ⊢ (ℎ = 𝐻 → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) = X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
32 | 31 | sseq1d 3948 | . . . 4 ⊢ (ℎ = 𝐻 → (X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺 ↔ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
33 | opnvonmbllem1.k | . . . 4 ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
34 | 32, 33 | elrab2 3620 | . . 3 ⊢ (𝐻 ∈ 𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
35 | 23, 34 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝐾) |
36 | opnvonmbllem1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) | |
37 | 36, 18 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
38 | nfv 1918 | . . 3 ⊢ Ⅎℎ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) | |
39 | nfcv 2906 | . . 3 ⊢ Ⅎℎ𝐻 | |
40 | nfrab1 3310 | . . . 4 ⊢ Ⅎℎ{ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
41 | 33, 40 | nfcxfr 2904 | . . 3 ⊢ Ⅎℎ𝐾 |
42 | 31 | eleq2d 2824 | . . 3 ⊢ (ℎ = 𝐻 → (𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ↔ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖))) |
43 | 38, 39, 41, 42 | rspcef 42509 | . 2 ⊢ ((𝐻 ∈ 𝐾 ∧ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
44 | 35, 37, 43 | syl2anc 583 | 1 ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 〈cop 4564 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 ℚcq 12617 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-z 12250 df-q 12618 |
This theorem is referenced by: opnvonmbllem2 44061 |
Copyright terms: Public domain | W3C validator |