![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnvonmbllem1 | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
opnvonmbllem1.i | ⊢ Ⅎ𝑖𝜑 |
opnvonmbllem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
opnvonmbllem1.c | ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) |
opnvonmbllem1.d | ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) |
opnvonmbllem1.s | ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) |
opnvonmbllem1.g | ⊢ (𝜑 → 𝐵 ⊆ 𝐺) |
opnvonmbllem1.y | ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
opnvonmbllem1.k | ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
opnvonmbllem1.h | ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) |
Ref | Expression |
---|---|
opnvonmbllem1 | ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnvonmbllem1.i | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
2 | opnvonmbllem1.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶:𝑋⟶ℚ) | |
3 | 2 | ffvelcdmda 7035 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ ℚ) |
4 | opnvonmbllem1.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷:𝑋⟶ℚ) | |
5 | 4 | ffvelcdmda 7035 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ℚ) |
6 | opelxpi 5670 | . . . . . . 7 ⊢ (((𝐶‘𝑖) ∈ ℚ ∧ (𝐷‘𝑖) ∈ ℚ) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) | |
7 | 3, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 〈(𝐶‘𝑖), (𝐷‘𝑖)〉 ∈ (ℚ × ℚ)) |
8 | opnvonmbllem1.h | . . . . . 6 ⊢ 𝐻 = (𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
9 | 1, 7, 8 | fmptdf 7065 | . . . . 5 ⊢ (𝜑 → 𝐻:𝑋⟶(ℚ × ℚ)) |
10 | qex 12886 | . . . . . . . . 9 ⊢ ℚ ∈ V | |
11 | 10, 10 | xpex 7687 | . . . . . . . 8 ⊢ (ℚ × ℚ) ∈ V |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (ℚ × ℚ) ∈ V) |
13 | opnvonmbllem1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | 12, 13 | jca 512 | . . . . . 6 ⊢ (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉)) |
15 | elmapg 8778 | . . . . . 6 ⊢ (((ℚ × ℚ) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ))) |
17 | 9, 16 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋)) |
18 | 1, 8 | hoi2toco 44838 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
19 | opnvonmbllem1.s | . . . . . 6 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐵) | |
20 | opnvonmbllem1.g | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐺) | |
21 | 19, 20 | sstrd 3954 | . . . . 5 ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ⊆ 𝐺) |
22 | 18, 21 | eqsstrd 3982 | . . . 4 ⊢ (𝜑 → X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺) |
23 | 17, 22 | jca 512 | . . 3 ⊢ (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
24 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑖ℎ | |
25 | nfmpt1 5213 | . . . . . . . 8 ⊢ Ⅎ𝑖(𝑖 ∈ 𝑋 ↦ 〈(𝐶‘𝑖), (𝐷‘𝑖)〉) | |
26 | 8, 25 | nfcxfr 2905 | . . . . . . 7 ⊢ Ⅎ𝑖𝐻 |
27 | 24, 26 | nfeq 2920 | . . . . . 6 ⊢ Ⅎ𝑖 ℎ = 𝐻 |
28 | coeq2 5814 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → ([,) ∘ ℎ) = ([,) ∘ 𝐻)) | |
29 | 28 | fveq1d 6844 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
30 | 29 | adantr 481 | . . . . . 6 ⊢ ((ℎ = 𝐻 ∧ 𝑖 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑖) = (([,) ∘ 𝐻)‘𝑖)) |
31 | 27, 30 | ixpeq2d 43266 | . . . . 5 ⊢ (ℎ = 𝐻 → X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) = X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
32 | 31 | sseq1d 3975 | . . . 4 ⊢ (ℎ = 𝐻 → (X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺 ↔ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
33 | opnvonmbllem1.k | . . . 4 ⊢ 𝐾 = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
34 | 32, 33 | elrab2 3648 | . . 3 ⊢ (𝐻 ∈ 𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)) |
35 | 23, 34 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝐾) |
36 | opnvonmbllem1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) | |
37 | 36, 18 | eleqtrrd 2841 | . 2 ⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) |
38 | nfv 1917 | . . 3 ⊢ Ⅎℎ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖) | |
39 | nfcv 2907 | . . 3 ⊢ Ⅎℎ𝐻 | |
40 | nfrab1 3426 | . . . 4 ⊢ Ⅎℎ{ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} | |
41 | 33, 40 | nfcxfr 2905 | . . 3 ⊢ Ⅎℎ𝐾 |
42 | 31 | eleq2d 2823 | . . 3 ⊢ (ℎ = 𝐻 → (𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ↔ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖))) |
43 | 38, 39, 41, 42 | rspcef 43270 | . 2 ⊢ ((𝐻 ∈ 𝐾 ∧ 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
44 | 35, 37, 43 | syl2anc 584 | 1 ⊢ (𝜑 → ∃ℎ ∈ 𝐾 𝑌 ∈ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∃wrex 3073 {crab 3407 Vcvv 3445 ⊆ wss 3910 〈cop 4592 ↦ cmpt 5188 × cxp 5631 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Xcixp 8835 ℚcq 12873 [,)cico 13266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-z 12500 df-q 12874 |
This theorem is referenced by: opnvonmbllem2 44864 |
Copyright terms: Public domain | W3C validator |