Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem1 Structured version   Visualization version   GIF version

Theorem opnvonmbllem1 46637
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem1.i 𝑖𝜑
opnvonmbllem1.x (𝜑𝑋𝑉)
opnvonmbllem1.c (𝜑𝐶:𝑋⟶ℚ)
opnvonmbllem1.d (𝜑𝐷:𝑋⟶ℚ)
opnvonmbllem1.s (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
opnvonmbllem1.g (𝜑𝐵𝐺)
opnvonmbllem1.y (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
opnvonmbllem1.k 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
opnvonmbllem1.h 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
Assertion
Ref Expression
opnvonmbllem1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Distinct variable groups:   ,𝐺   ,𝐻   ,𝑋,𝑖   ,𝑌
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝐷(,𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐾(,𝑖)   𝑉(,𝑖)   𝑌(𝑖)

Proof of Theorem opnvonmbllem1
StepHypRef Expression
1 opnvonmbllem1.i . . . . . 6 𝑖𝜑
2 opnvonmbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℚ)
32ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℚ)
4 opnvonmbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℚ)
54ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℚ)
6 opelxpi 5678 . . . . . . 7 (((𝐶𝑖) ∈ ℚ ∧ (𝐷𝑖) ∈ ℚ) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
73, 5, 6syl2anc 584 . . . . . 6 ((𝜑𝑖𝑋) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
8 opnvonmbllem1.h . . . . . 6 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
91, 7, 8fmptdf 7092 . . . . 5 (𝜑𝐻:𝑋⟶(ℚ × ℚ))
10 qex 12927 . . . . . . . . 9 ℚ ∈ V
1110, 10xpex 7732 . . . . . . . 8 (ℚ × ℚ) ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → (ℚ × ℚ) ∈ V)
13 opnvonmbllem1.x . . . . . . 7 (𝜑𝑋𝑉)
1412, 13jca 511 . . . . . 6 (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋𝑉))
15 elmapg 8815 . . . . . 6 (((ℚ × ℚ) ∈ V ∧ 𝑋𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
179, 16mpbird 257 . . . 4 (𝜑𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋))
181, 8hoi2toco 46612 . . . . 5 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
19 opnvonmbllem1.s . . . . . 6 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
20 opnvonmbllem1.g . . . . . 6 (𝜑𝐵𝐺)
2119, 20sstrd 3960 . . . . 5 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐺)
2218, 21eqsstrd 3984 . . . 4 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)
2317, 22jca 511 . . 3 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
24 nfcv 2892 . . . . . . 7 𝑖
25 nfmpt1 5209 . . . . . . . 8 𝑖(𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
268, 25nfcxfr 2890 . . . . . . 7 𝑖𝐻
2724, 26nfeq 2906 . . . . . 6 𝑖 = 𝐻
28 coeq2 5825 . . . . . . . 8 ( = 𝐻 → ([,) ∘ ) = ([,) ∘ 𝐻))
2928fveq1d 6863 . . . . . . 7 ( = 𝐻 → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3029adantr 480 . . . . . 6 (( = 𝐻𝑖𝑋) → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3127, 30ixpeq2d 45069 . . . . 5 ( = 𝐻X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
3231sseq1d 3981 . . . 4 ( = 𝐻 → (X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
33 opnvonmbllem1.k . . . 4 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
3432, 33elrab2 3665 . . 3 (𝐻𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
3523, 34sylibr 234 . 2 (𝜑𝐻𝐾)
36 opnvonmbllem1.y . . 3 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
3736, 18eleqtrrd 2832 . 2 (𝜑𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
38 nfv 1914 . . 3 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)
39 nfcv 2892 . . 3 𝐻
40 nfrab1 3429 . . . 4 { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
4133, 40nfcxfr 2890 . . 3 𝐾
4231eleq2d 2815 . . 3 ( = 𝐻 → (𝑌X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)))
4338, 39, 41, 42rspcef 45073 . 2 ((𝐻𝐾𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
4435, 37, 43syl2anc 584 1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  cop 4598  cmpt 5191   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Xcixp 8873  cq 12914  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-z 12537  df-q 12915
This theorem is referenced by:  opnvonmbllem2  46638
  Copyright terms: Public domain W3C validator