Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem1 Structured version   Visualization version   GIF version

Theorem opnvonmbllem1 44863
Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem1.i 𝑖𝜑
opnvonmbllem1.x (𝜑𝑋𝑉)
opnvonmbllem1.c (𝜑𝐶:𝑋⟶ℚ)
opnvonmbllem1.d (𝜑𝐷:𝑋⟶ℚ)
opnvonmbllem1.s (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
opnvonmbllem1.g (𝜑𝐵𝐺)
opnvonmbllem1.y (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
opnvonmbllem1.k 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
opnvonmbllem1.h 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
Assertion
Ref Expression
opnvonmbllem1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Distinct variable groups:   ,𝐺   ,𝐻   ,𝑋,𝑖   ,𝑌
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝐷(,𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐾(,𝑖)   𝑉(,𝑖)   𝑌(𝑖)

Proof of Theorem opnvonmbllem1
StepHypRef Expression
1 opnvonmbllem1.i . . . . . 6 𝑖𝜑
2 opnvonmbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℚ)
32ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℚ)
4 opnvonmbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℚ)
54ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℚ)
6 opelxpi 5670 . . . . . . 7 (((𝐶𝑖) ∈ ℚ ∧ (𝐷𝑖) ∈ ℚ) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
73, 5, 6syl2anc 584 . . . . . 6 ((𝜑𝑖𝑋) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
8 opnvonmbllem1.h . . . . . 6 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
91, 7, 8fmptdf 7065 . . . . 5 (𝜑𝐻:𝑋⟶(ℚ × ℚ))
10 qex 12886 . . . . . . . . 9 ℚ ∈ V
1110, 10xpex 7687 . . . . . . . 8 (ℚ × ℚ) ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → (ℚ × ℚ) ∈ V)
13 opnvonmbllem1.x . . . . . . 7 (𝜑𝑋𝑉)
1412, 13jca 512 . . . . . 6 (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋𝑉))
15 elmapg 8778 . . . . . 6 (((ℚ × ℚ) ∈ V ∧ 𝑋𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
179, 16mpbird 256 . . . 4 (𝜑𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋))
181, 8hoi2toco 44838 . . . . 5 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
19 opnvonmbllem1.s . . . . . 6 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
20 opnvonmbllem1.g . . . . . 6 (𝜑𝐵𝐺)
2119, 20sstrd 3954 . . . . 5 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐺)
2218, 21eqsstrd 3982 . . . 4 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)
2317, 22jca 512 . . 3 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
24 nfcv 2907 . . . . . . 7 𝑖
25 nfmpt1 5213 . . . . . . . 8 𝑖(𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
268, 25nfcxfr 2905 . . . . . . 7 𝑖𝐻
2724, 26nfeq 2920 . . . . . 6 𝑖 = 𝐻
28 coeq2 5814 . . . . . . . 8 ( = 𝐻 → ([,) ∘ ) = ([,) ∘ 𝐻))
2928fveq1d 6844 . . . . . . 7 ( = 𝐻 → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3029adantr 481 . . . . . 6 (( = 𝐻𝑖𝑋) → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3127, 30ixpeq2d 43266 . . . . 5 ( = 𝐻X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
3231sseq1d 3975 . . . 4 ( = 𝐻 → (X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
33 opnvonmbllem1.k . . . 4 𝐾 = { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
3432, 33elrab2 3648 . . 3 (𝐻𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑m 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
3523, 34sylibr 233 . 2 (𝜑𝐻𝐾)
36 opnvonmbllem1.y . . 3 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
3736, 18eleqtrrd 2841 . 2 (𝜑𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
38 nfv 1917 . . 3 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)
39 nfcv 2907 . . 3 𝐻
40 nfrab1 3426 . . . 4 { ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
4133, 40nfcxfr 2905 . . 3 𝐾
4231eleq2d 2823 . . 3 ( = 𝐻 → (𝑌X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)))
4338, 39, 41, 42rspcef 43270 . 2 ((𝐻𝐾𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
4435, 37, 43syl2anc 584 1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  cop 4592  cmpt 5188   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Xcixp 8835  cq 12873  [,)cico 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-z 12500  df-q 12874
This theorem is referenced by:  opnvonmbllem2  44864
  Copyright terms: Public domain W3C validator