Proof of Theorem smfmullem2
| Step | Hyp | Ref
| Expression |
| 1 | | smfmullem2.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 2 | | smfmullem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ ℚ) |
| 3 | | smfmullem2.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℚ) |
| 4 | | smfmullem2.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ ℚ) |
| 5 | 1, 2, 3, 4 | s4cld 14897 |
. . . . . . 7
⊢ (𝜑 → 〈“𝑃𝑅𝑆𝑍”〉 ∈ Word
ℚ) |
| 6 | | s4len 14923 |
. . . . . . . 8
⊢
(♯‘〈“𝑃𝑅𝑆𝑍”〉) = 4 |
| 7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(♯‘〈“𝑃𝑅𝑆𝑍”〉) = 4) |
| 8 | 5, 7 | jca 511 |
. . . . . 6
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉 ∈ Word ℚ ∧
(♯‘〈“𝑃𝑅𝑆𝑍”〉) = 4)) |
| 9 | | qex 12982 |
. . . . . . . 8
⊢ ℚ
∈ V |
| 10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℚ ∈
V) |
| 11 | | 4nn0 12525 |
. . . . . . . 8
⊢ 4 ∈
ℕ0 |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 4 ∈
ℕ0) |
| 13 | | wrdmap 14569 |
. . . . . . 7
⊢ ((ℚ
∈ V ∧ 4 ∈ ℕ0) → ((〈“𝑃𝑅𝑆𝑍”〉 ∈ Word ℚ ∧
(♯‘〈“𝑃𝑅𝑆𝑍”〉) = 4) ↔
〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0..^4)))) |
| 14 | 10, 12, 13 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((〈“𝑃𝑅𝑆𝑍”〉 ∈ Word ℚ ∧
(♯‘〈“𝑃𝑅𝑆𝑍”〉) = 4) ↔
〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0..^4)))) |
| 15 | 8, 14 | mpbid 232 |
. . . . 5
⊢ (𝜑 → 〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0..^4))) |
| 16 | | 3z 12630 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
| 17 | | fzval3 13755 |
. . . . . . . . . 10
⊢ (3 ∈
ℤ → (0...3) = (0..^(3 + 1))) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ (0...3) =
(0..^(3 + 1)) |
| 19 | | 3p1e4 12390 |
. . . . . . . . . 10
⊢ (3 + 1) =
4 |
| 20 | 19 | oveq2i 7421 |
. . . . . . . . 9
⊢ (0..^(3 +
1)) = (0..^4) |
| 21 | 18, 20 | eqtri 2759 |
. . . . . . . 8
⊢ (0...3) =
(0..^4) |
| 22 | 21 | eqcomi 2745 |
. . . . . . 7
⊢ (0..^4) =
(0...3) |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0..^4) =
(0...3)) |
| 24 | 23 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 → (ℚ
↑m (0..^4)) = (ℚ ↑m
(0...3))) |
| 25 | 15, 24 | eleqtrd 2837 |
. . . 4
⊢ (𝜑 → 〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0...3))) |
| 26 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) → 𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) |
| 27 | | s4fv0 14919 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℚ →
(〈“𝑃𝑅𝑆𝑍”〉‘0) = 𝑃) |
| 28 | 1, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉‘0) = 𝑃) |
| 29 | | s4fv1 14920 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℚ →
(〈“𝑃𝑅𝑆𝑍”〉‘1) = 𝑅) |
| 30 | 2, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉‘1) = 𝑅) |
| 31 | 28, 30 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝜑 → ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) = (𝑃(,)𝑅)) |
| 32 | 31 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) →
((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) = (𝑃(,)𝑅)) |
| 33 | 26, 32 | eleqtrd 2837 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) → 𝑢 ∈ (𝑃(,)𝑅)) |
| 34 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) → 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) |
| 35 | | s4fv2 14921 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ ℚ →
(〈“𝑃𝑅𝑆𝑍”〉‘2) = 𝑆) |
| 36 | 3, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉‘2) = 𝑆) |
| 37 | | s4fv3 14922 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ ℚ →
(〈“𝑃𝑅𝑆𝑍”〉‘3) = 𝑍) |
| 38 | 4, 37 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉‘3) = 𝑍) |
| 39 | 36, 38 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3)) = (𝑆(,)𝑍)) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) →
((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3)) = (𝑆(,)𝑍)) |
| 41 | 34, 40 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) → 𝑣 ∈ (𝑆(,)𝑍)) |
| 42 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑣 ∈ (𝑆(,)𝑍)) |
| 43 | 41, 42 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) → 𝑣 ∈ (𝑆(,)𝑍)) |
| 44 | 43 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) → 𝑣 ∈ (𝑆(,)𝑍)) |
| 45 | | smfmullem2.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝐴 ∈ ℝ) |
| 47 | | smfmullem2.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 48 | 47 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑈 ∈ ℝ) |
| 49 | | smfmullem2.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ ℝ) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑉 ∈ ℝ) |
| 51 | | smfmullem2.l |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 · 𝑉) < 𝐴) |
| 52 | 51 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → (𝑈 · 𝑉) < 𝐴) |
| 53 | | smfmullem2.x |
. . . . . . . . 9
⊢ 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) |
| 54 | | smfmullem2.y |
. . . . . . . . 9
⊢ 𝑌 = if(1 ≤ 𝑋, 1, 𝑋) |
| 55 | | smfmullem2.p2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) |
| 57 | | smfmullem2.42 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) |
| 59 | | smfmullem2.w2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) |
| 60 | 59 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) |
| 61 | | smfmullem2.z2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) |
| 62 | 61 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) |
| 63 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑢 ∈ (𝑃(,)𝑅)) |
| 64 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → 𝑣 ∈ (𝑆(,)𝑍)) |
| 65 | 46, 48, 50, 52, 53, 54, 56, 58, 60, 62, 63, 64 | smfmullem1 46787 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ (𝑆(,)𝑍)) → (𝑢 · 𝑣) < 𝐴) |
| 66 | 44, 65 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) ∧ 𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) → (𝑢 · 𝑣) < 𝐴) |
| 67 | 66 | ralrimiva 3133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑃(,)𝑅)) → ∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴) |
| 68 | 33, 67 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) →
∀𝑣 ∈
((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴) |
| 69 | 68 | ralrimiva 3133 |
. . . 4
⊢ (𝜑 → ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴) |
| 70 | 25, 69 | jca 511 |
. . 3
⊢ (𝜑 → (〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0...3)) ∧ ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴)) |
| 71 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑞‘0) = (〈“𝑃𝑅𝑆𝑍”〉‘0)) |
| 72 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑞‘1) = (〈“𝑃𝑅𝑆𝑍”〉‘1)) |
| 73 | 71, 72 | oveq12d 7428 |
. . . . . 6
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → ((𝑞‘0)(,)(𝑞‘1)) = ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) |
| 74 | 73 | raleqdv 3309 |
. . . . 5
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴 ↔ ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴)) |
| 75 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑞‘2) = (〈“𝑃𝑅𝑆𝑍”〉‘2)) |
| 76 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑞‘3) = (〈“𝑃𝑅𝑆𝑍”〉‘3)) |
| 77 | 75, 76 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → ((𝑞‘2)(,)(𝑞‘3)) = ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) |
| 78 | 77 | raleqdv 3309 |
. . . . . 6
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴 ↔ ∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴)) |
| 79 | 78 | ralbidv 3164 |
. . . . 5
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴 ↔ ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴)) |
| 80 | 74, 79 | bitrd 279 |
. . . 4
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴 ↔ ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴)) |
| 81 | | smfmullem2.k |
. . . 4
⊢ 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3))
∣ ∀𝑢 ∈
((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴} |
| 82 | 80, 81 | elrab2 3679 |
. . 3
⊢
(〈“𝑃𝑅𝑆𝑍”〉 ∈ 𝐾 ↔ (〈“𝑃𝑅𝑆𝑍”〉 ∈ (ℚ
↑m (0...3)) ∧ ∀𝑢 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))∀𝑣 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))(𝑢 · 𝑣) < 𝐴)) |
| 83 | 70, 82 | sylibr 234 |
. 2
⊢ (𝜑 → 〈“𝑃𝑅𝑆𝑍”〉 ∈ 𝐾) |
| 84 | | qssre 12980 |
. . . . . . 7
⊢ ℚ
⊆ ℝ |
| 85 | 84, 1 | sselid 3961 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 86 | 85 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
ℝ*) |
| 87 | 84, 2 | sselid 3961 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 88 | 87 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
| 89 | 54 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)) |
| 90 | | 1rp 13017 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
| 91 | 90 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ+) |
| 92 | 53 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))) |
| 93 | 47, 49 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 · 𝑉) ∈ ℝ) |
| 94 | | difrp 13052 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈 · 𝑉) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑈 · 𝑉) < 𝐴 ↔ (𝐴 − (𝑈 · 𝑉)) ∈
ℝ+)) |
| 95 | 93, 45, 94 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑈 · 𝑉) < 𝐴 ↔ (𝐴 − (𝑈 · 𝑉)) ∈
ℝ+)) |
| 96 | 51, 95 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 − (𝑈 · 𝑉)) ∈
ℝ+) |
| 97 | | 1red 11241 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℝ) |
| 98 | 47 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 99 | 98 | abscld 15460 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘𝑈) ∈
ℝ) |
| 100 | 49 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 101 | 100 | abscld 15460 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘𝑉) ∈
ℝ) |
| 102 | 99, 101 | readdcld 11269 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ) |
| 103 | 97, 102 | readdcld 11269 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ) |
| 104 | | 0re 11242 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
| 105 | 104 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℝ) |
| 106 | 91 | rpgt0d 13059 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < 1) |
| 107 | 98 | absge0d 15468 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ≤ (abs‘𝑈)) |
| 108 | 100 | absge0d 15468 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 ≤ (abs‘𝑉)) |
| 109 | 99, 101 | addge01d 11830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))) |
| 110 | 108, 109 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))) |
| 111 | 105, 99, 102, 107, 110 | letrd 11397 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉))) |
| 112 | 97, 102 | addge01d 11830 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))) |
| 113 | 111, 112 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ (1 +
((abs‘𝑈) +
(abs‘𝑉)))) |
| 114 | 105, 97, 103, 106, 113 | ltletrd 11400 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (1 +
((abs‘𝑈) +
(abs‘𝑉)))) |
| 115 | 103, 114 | elrpd 13053 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈
ℝ+) |
| 116 | 96, 115 | rpdivcld 13073 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈
ℝ+) |
| 117 | 92, 116 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
| 118 | 91, 117 | ifcld 4552 |
. . . . . . . . . 10
⊢ (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈
ℝ+) |
| 119 | 89, 118 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
| 120 | 119 | rpred 13056 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 121 | 47, 120 | resubcld 11670 |
. . . . . . 7
⊢ (𝜑 → (𝑈 − 𝑌) ∈ ℝ) |
| 122 | 121 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → (𝑈 − 𝑌) ∈
ℝ*) |
| 123 | 47 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈
ℝ*) |
| 124 | | iooltub 45506 |
. . . . . 6
⊢ (((𝑈 − 𝑌) ∈ ℝ* ∧ 𝑈 ∈ ℝ*
∧ 𝑃 ∈ ((𝑈 − 𝑌)(,)𝑈)) → 𝑃 < 𝑈) |
| 125 | 122, 123,
55, 124 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 𝑃 < 𝑈) |
| 126 | 47, 120 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (𝑈 + 𝑌) ∈ ℝ) |
| 127 | 126 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → (𝑈 + 𝑌) ∈
ℝ*) |
| 128 | | ioogtlb 45491 |
. . . . . 6
⊢ ((𝑈 ∈ ℝ*
∧ (𝑈 + 𝑌) ∈ ℝ*
∧ 𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝑈 < 𝑅) |
| 129 | 123, 127,
57, 128 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 𝑈 < 𝑅) |
| 130 | 86, 88, 47, 125, 129 | eliood 45494 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ (𝑃(,)𝑅)) |
| 131 | 31 | eqcomd 2742 |
. . . 4
⊢ (𝜑 → (𝑃(,)𝑅) = ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) |
| 132 | 130, 131 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → 𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1))) |
| 133 | 84, 3 | sselid 3961 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 134 | 133 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
| 135 | 84, 4 | sselid 3961 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ ℝ) |
| 136 | 135 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈
ℝ*) |
| 137 | 49, 120 | resubcld 11670 |
. . . . . . 7
⊢ (𝜑 → (𝑉 − 𝑌) ∈ ℝ) |
| 138 | 137 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → (𝑉 − 𝑌) ∈
ℝ*) |
| 139 | 49 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → 𝑉 ∈
ℝ*) |
| 140 | | iooltub 45506 |
. . . . . 6
⊢ (((𝑉 − 𝑌) ∈ ℝ* ∧ 𝑉 ∈ ℝ*
∧ 𝑆 ∈ ((𝑉 − 𝑌)(,)𝑉)) → 𝑆 < 𝑉) |
| 141 | 138, 139,
59, 140 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 𝑆 < 𝑉) |
| 142 | 49, 120 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (𝑉 + 𝑌) ∈ ℝ) |
| 143 | 142 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → (𝑉 + 𝑌) ∈
ℝ*) |
| 144 | | ioogtlb 45491 |
. . . . . 6
⊢ ((𝑉 ∈ ℝ*
∧ (𝑉 + 𝑌) ∈ ℝ*
∧ 𝑍 ∈ (𝑉(,)(𝑉 + 𝑌))) → 𝑉 < 𝑍) |
| 145 | 139, 143,
61, 144 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 𝑉 < 𝑍) |
| 146 | 134, 136,
49, 141, 145 | eliood 45494 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ (𝑆(,)𝑍)) |
| 147 | 39 | eqcomd 2742 |
. . . 4
⊢ (𝜑 → (𝑆(,)𝑍) = ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) |
| 148 | 146, 147 | eleqtrd 2837 |
. . 3
⊢ (𝜑 → 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) |
| 149 | 132, 148 | jca 511 |
. 2
⊢ (𝜑 → (𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) ∧ 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3)))) |
| 150 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑞(𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) ∧ 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))) |
| 151 | | nfcv 2899 |
. . 3
⊢
Ⅎ𝑞〈“𝑃𝑅𝑆𝑍”〉 |
| 152 | | nfrab1 3441 |
. . . 4
⊢
Ⅎ𝑞{𝑞 ∈ (ℚ ↑m (0...3))
∣ ∀𝑢 ∈
((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝐴} |
| 153 | 81, 152 | nfcxfr 2897 |
. . 3
⊢
Ⅎ𝑞𝐾 |
| 154 | 73 | eleq2d 2821 |
. . . 4
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ↔ 𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)))) |
| 155 | 77 | eleq2d 2821 |
. . . 4
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → (𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)) ↔ 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3)))) |
| 156 | 154, 155 | anbi12d 632 |
. . 3
⊢ (𝑞 = 〈“𝑃𝑅𝑆𝑍”〉 → ((𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3))) ↔ (𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) ∧ 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3))))) |
| 157 | 150, 151,
153, 156 | rspcef 45063 |
. 2
⊢
((〈“𝑃𝑅𝑆𝑍”〉 ∈ 𝐾 ∧ (𝑈 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘0)(,)(〈“𝑃𝑅𝑆𝑍”〉‘1)) ∧ 𝑉 ∈ ((〈“𝑃𝑅𝑆𝑍”〉‘2)(,)(〈“𝑃𝑅𝑆𝑍”〉‘3)))) →
∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) |
| 158 | 83, 149, 157 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑞 ∈ 𝐾 (𝑈 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝑉 ∈ ((𝑞‘2)(,)(𝑞‘3)))) |