MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexopabb Structured version   Visualization version   GIF version

Theorem rexopabb 5415
Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023.)
Hypotheses
Ref Expression
rexopabb.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
rexopabb.p (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
Assertion
Ref Expression
rexopabb (∃𝑜𝑂 𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
Distinct variable groups:   𝑜,𝑂   𝑥,𝑜,𝑦   𝜑,𝑜   𝜓,𝑥,𝑦   𝜒,𝑜
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑜)   𝜒(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rexopabb
StepHypRef Expression
1 rexopabb.o . . 3 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21rexeqi 3414 . 2 (∃𝑜𝑂 𝜓 ↔ ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
3 elopab 5414 . . . . 5 (𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 simprr 771 . . . . . . . . 9 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → 𝜑)
5 rexopabb.p . . . . . . . . . . . 12 (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
65biimpd 231 . . . . . . . . . . 11 (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
76adantr 483 . . . . . . . . . 10 ((𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝜓𝜒))
87impcom 410 . . . . . . . . 9 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → 𝜒)
94, 8jca 514 . . . . . . . 8 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → (𝜑𝜒))
109ex 415 . . . . . . 7 (𝜓 → ((𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝜑𝜒)))
11102eximdv 1920 . . . . . 6 (𝜓 → (∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝜑𝜒)))
1211impcom 410 . . . . 5 ((∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∧ 𝜓) → ∃𝑥𝑦(𝜑𝜒))
133, 12sylanb 583 . . . 4 ((𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝜓) → ∃𝑥𝑦(𝜑𝜒))
1413rexlimiva 3281 . . 3 (∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓 → ∃𝑥𝑦(𝜑𝜒))
15 nfopab1 5135 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
16 nfv 1915 . . . . 5 𝑥𝜓
1715, 16nfrex 3309 . . . 4 𝑥𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓
18 nfopab2 5136 . . . . . 6 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
19 nfv 1915 . . . . . 6 𝑦𝜓
2018, 19nfrex 3309 . . . . 5 𝑦𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓
21 opabidw 5412 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
22 opex 5356 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
2322, 5sbcie 3812 . . . . . 6 ([𝑥, 𝑦⟩ / 𝑜]𝜓𝜒)
24 rspesbca 3864 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ [𝑥, 𝑦⟩ / 𝑜]𝜓) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2521, 23, 24syl2anbr 600 . . . . 5 ((𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2620, 25exlimi 2217 . . . 4 (∃𝑦(𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2717, 26exlimi 2217 . . 3 (∃𝑥𝑦(𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2814, 27impbii 211 . 2 (∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
292, 28bitri 277 1 (∃𝑜𝑂 𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3139  [wsbc 3772  cop 4573  {copab 5128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5129
This theorem is referenced by:  satfv1  32610
  Copyright terms: Public domain W3C validator