MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexopabb Structured version   Visualization version   GIF version

Theorem rexopabb 5508
Description: Restricted existential quantification over an ordered-pair class abstraction. (Contributed by AV, 8-Nov-2023.)
Hypotheses
Ref Expression
rexopabb.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
rexopabb.p (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
Assertion
Ref Expression
rexopabb (∃𝑜𝑂 𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
Distinct variable groups:   𝑜,𝑂   𝑥,𝑜,𝑦   𝜑,𝑜   𝜓,𝑥,𝑦   𝜒,𝑜
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑜)   𝜒(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rexopabb
StepHypRef Expression
1 rexopabb.o . . 3 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21rexeqi 3308 . 2 (∃𝑜𝑂 𝜓 ↔ ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
3 elopab 5507 . . . . 5 (𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 simprr 772 . . . . . . . . 9 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → 𝜑)
5 rexopabb.p . . . . . . . . . . . 12 (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
65biimpd 229 . . . . . . . . . . 11 (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))
76adantr 480 . . . . . . . . . 10 ((𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝜓𝜒))
87impcom 407 . . . . . . . . 9 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → 𝜒)
94, 8jca 511 . . . . . . . 8 ((𝜓 ∧ (𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) → (𝜑𝜒))
109ex 412 . . . . . . 7 (𝜓 → ((𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝜑𝜒)))
11102eximdv 1919 . . . . . 6 (𝜓 → (∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝜑𝜒)))
1211impcom 407 . . . . 5 ((∃𝑥𝑦(𝑜 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∧ 𝜓) → ∃𝑥𝑦(𝜑𝜒))
133, 12sylanb 581 . . . 4 ((𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝜓) → ∃𝑥𝑦(𝜑𝜒))
1413rexlimiva 3134 . . 3 (∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓 → ∃𝑥𝑦(𝜑𝜒))
15 nfopab1 5194 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
16 nfv 1914 . . . . 5 𝑥𝜓
1715, 16nfrexw 3297 . . . 4 𝑥𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓
18 nfopab2 5195 . . . . . 6 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
19 nfv 1914 . . . . . 6 𝑦𝜓
2018, 19nfrexw 3297 . . . . 5 𝑦𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓
21 opabidw 5504 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
22 opex 5444 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
2322, 5sbcie 3812 . . . . . 6 ([𝑥, 𝑦⟩ / 𝑜]𝜓𝜒)
24 rspesbca 3861 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ [𝑥, 𝑦⟩ / 𝑜]𝜓) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2521, 23, 24syl2anbr 599 . . . . 5 ((𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2620, 25exlimi 2218 . . . 4 (∃𝑦(𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2717, 26exlimi 2218 . . 3 (∃𝑥𝑦(𝜑𝜒) → ∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓)
2814, 27impbii 209 . 2 (∃𝑜 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
292, 28bitri 275 1 (∃𝑜𝑂 𝜓 ↔ ∃𝑥𝑦(𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3061  [wsbc 3770  cop 4612  {copab 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5187
This theorem is referenced by:  satfv1  35390  ralopabb  43402
  Copyright terms: Public domain W3C validator