| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version | ||
| Description: Existence form of spsbc 3754. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3751 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | rspesbca 3832 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
| 3 | 1, 2 | mpancom 688 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
| 4 | rexv 3464 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-sbc 3742 |
| This theorem is referenced by: spesbcd 3834 opelopabsb 5470 sbccomieg 42832 frege124d 43800 sbiota1 44473 |
| Copyright terms: Public domain | W3C validator |