![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version |
Description: Existence form of spsbc 3790. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3787 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | rspesbca 3875 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
3 | 1, 2 | mpancom 685 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
4 | rexv 3499 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
5 | 3, 4 | sylib 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-sbc 3778 |
This theorem is referenced by: spesbcd 3877 opelopabsb 5530 sbccomieg 41834 frege124d 42815 sbiota1 43496 |
Copyright terms: Public domain | W3C validator |