MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spesbc Structured version   Visualization version   GIF version

Theorem spesbc 3891
Description: Existence form of spsbc 3804. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3801 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 rspesbca 3890 . . 3 ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑)
31, 2mpancom 688 . 2 ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑)
4 rexv 3507 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
53, 4sylib 218 1 ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776  wcel 2106  wrex 3068  Vcvv 3478  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-sbc 3792
This theorem is referenced by:  spesbcd  3892  opelopabsb  5540  sbccomieg  42781  frege124d  43751  sbiota1  44430
  Copyright terms: Public domain W3C validator