![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version |
Description: Existence form of spsbc 3665. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3662 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | rspesbca 3737 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
3 | 1, 2 | mpancom 678 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
4 | rexv 3422 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
5 | 3, 4 | sylib 210 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1823 ∈ wcel 2107 ∃wrex 3091 Vcvv 3398 [wsbc 3652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-v 3400 df-sbc 3653 |
This theorem is referenced by: spesbcd 3739 opelopabsb 5222 sbccomieg 38317 frege124d 39010 sbiota1 39590 |
Copyright terms: Public domain | W3C validator |