| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version | ||
| Description: Existence form of spsbc 3766. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3763 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | rspesbca 3844 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
| 3 | 1, 2 | mpancom 688 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
| 4 | rexv 3475 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-sbc 3754 |
| This theorem is referenced by: spesbcd 3846 opelopabsb 5490 sbccomieg 42781 frege124d 43750 sbiota1 44423 |
| Copyright terms: Public domain | W3C validator |