| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version | ||
| Description: Existence form of spsbc 3778. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3775 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | rspesbca 3856 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
| 3 | 1, 2 | mpancom 688 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
| 4 | rexv 3488 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-sbc 3766 |
| This theorem is referenced by: spesbcd 3858 opelopabsb 5505 sbccomieg 42816 frege124d 43785 sbiota1 44458 |
| Copyright terms: Public domain | W3C validator |