MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spesbc Structured version   Visualization version   GIF version

Theorem spesbc 3811
Description: Existence form of spsbc 3724. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3721 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 rspesbca 3810 . . 3 ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑)
31, 2mpancom 684 . 2 ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑)
4 rexv 3447 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
53, 4sylib 217 1 ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712
This theorem is referenced by:  spesbcd  3812  opelopabsb  5436  sbccomieg  40531  frege124d  41258  sbiota1  41941
  Copyright terms: Public domain W3C validator