MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indexfi Structured version   Visualization version   GIF version

Theorem indexfi 9366
Description: If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 37066. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
indexfi ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐴   𝐵,𝑐,𝑥,𝑦   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexfi
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . . . . 6 𝑧𝜑
2 nfsbc1v 3797 . . . . . 6 𝑦[𝑧 / 𝑦]𝜑
3 sbceq1a 3788 . . . . . 6 (𝑦 = 𝑧 → (𝜑[𝑧 / 𝑦]𝜑))
41, 2, 3cbvrexw 3303 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
54ralbii 3092 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
6 dfsbcq 3779 . . . . 5 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
76ac6sfi 9293 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
85, 7sylan2b 593 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
9 simpll 764 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝐴 ∈ Fin)
10 ffn 6717 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
1110ad2antrl 725 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓 Fn 𝐴)
12 dffn4 6811 . . . . . 6 (𝑓 Fn 𝐴𝑓:𝐴onto→ran 𝑓)
1311, 12sylib 217 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓:𝐴onto→ran 𝑓)
14 fofi 9344 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto→ran 𝑓) → ran 𝑓 ∈ Fin)
159, 13, 14syl2anc 583 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓 ∈ Fin)
16 frn 6724 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
1716ad2antrl 725 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓𝐵)
18 fnfvelrn 7082 . . . . . . . . 9 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
1910, 18sylan 579 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
20 rspesbca 3875 . . . . . . . . 9 (((𝑓𝑥) ∈ ran 𝑓[(𝑓𝑥) / 𝑦]𝜑) → ∃𝑦 ∈ ran 𝑓𝜑)
2120ex 412 . . . . . . . 8 ((𝑓𝑥) ∈ ran 𝑓 → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2219, 21syl 17 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2322ralimdva 3166 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
2423imp 406 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
2524adantl 481 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
26 simpr 484 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → 𝑤𝐴)
27 simprr 770 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
28 nfv 1916 . . . . . . . . . . 11 𝑤[(𝑓𝑥) / 𝑦]𝜑
29 nfsbc1v 3797 . . . . . . . . . . 11 𝑥[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑
30 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑓𝑥) = (𝑓𝑤))
3130sbceq1d 3782 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
32 sbceq1a 3788 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑤) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3331, 32bitrd 279 . . . . . . . . . . 11 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3428, 29, 33cbvralw 3302 . . . . . . . . . 10 (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 ↔ ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3527, 34sylib 217 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3635r19.21bi 3247 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
37 rspesbca 3875 . . . . . . . 8 ((𝑤𝐴[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3826, 36, 37syl2anc 583 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3938ralrimiva 3145 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
40 dfsbcq 3779 . . . . . . . . 9 (𝑧 = (𝑓𝑤) → ([𝑧 / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
4140rexbidv 3177 . . . . . . . 8 (𝑧 = (𝑓𝑤) → (∃𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4241ralrn 7089 . . . . . . 7 (𝑓 Fn 𝐴 → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4311, 42syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4439, 43mpbird 257 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
45 nfv 1916 . . . . . 6 𝑧𝑥𝐴 𝜑
46 nfcv 2902 . . . . . . 7 𝑦𝐴
4746, 2nfrexw 3309 . . . . . 6 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
483rexbidv 3177 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
4945, 47, 48cbvralw 3302 . . . . 5 (∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑 ↔ ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
5044, 49sylibr 233 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)
51 sseq1 4007 . . . . . 6 (𝑐 = ran 𝑓 → (𝑐𝐵 ↔ ran 𝑓𝐵))
52 rexeq 3320 . . . . . . 7 (𝑐 = ran 𝑓 → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ ran 𝑓𝜑))
5352ralbidv 3176 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
54 raleq 3321 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))
5551, 53, 543anbi123d 1435 . . . . 5 (𝑐 = ran 𝑓 → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)))
5655rspcev 3612 . . . 4 ((ran 𝑓 ∈ Fin ∧ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
5715, 17, 25, 50, 56syl13anc 1371 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
588, 57exlimddv 1937 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
59583adant2 1130 1 ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  [wsbc 3777  wss 3948  ran crn 5677   Fn wfn 6538  wf 6539  ontowfo 6541  cfv 6543  Fincfn 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-fin 8949
This theorem is referenced by:  filbcmb  37072
  Copyright terms: Public domain W3C validator