Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexdom Structured version   Visualization version   GIF version

Theorem indexdom 37728
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴, and which is dominated by the set 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexdom ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
Distinct variable groups:   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3773 . . 3 𝑦[(𝑓𝑥) / 𝑦]𝜑
2 sbceq1a 3764 . . 3 (𝑦 = (𝑓𝑥) → (𝜑[(𝑓𝑥) / 𝑦]𝜑))
31, 2ac6gf 37726 . 2 ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
4 fdm 6697 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
5 vex 3451 . . . . . . . 8 𝑓 ∈ V
65dmex 7885 . . . . . . 7 dom 𝑓 ∈ V
74, 6eqeltrrdi 2837 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
8 ffn 6688 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
9 fnrndomg 10489 . . . . . 6 (𝐴 ∈ V → (𝑓 Fn 𝐴 → ran 𝑓𝐴))
107, 8, 9sylc 65 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐴)
1110adantr 480 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ran 𝑓𝐴)
12 frn 6695 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
1312adantr 480 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ran 𝑓𝐵)
14 nfv 1914 . . . . . 6 𝑥 𝑓:𝐴𝐵
15 nfra1 3261 . . . . . 6 𝑥𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑
1614, 15nfan 1899 . . . . 5 𝑥(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
17 ffun 6691 . . . . . . . . . 10 (𝑓:𝐴𝐵 → Fun 𝑓)
1817adantr 480 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → Fun 𝑓)
194eleq2d 2814 . . . . . . . . . 10 (𝑓:𝐴𝐵 → (𝑥 ∈ dom 𝑓𝑥𝐴))
2019biimpar 477 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝑓)
21 fvelrn 7048 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ran 𝑓)
2218, 20, 21syl2anc 584 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
2322adantlr 715 . . . . . . 7 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
24 rspa 3226 . . . . . . . 8 ((∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑𝑥𝐴) → [(𝑓𝑥) / 𝑦]𝜑)
2524adantll 714 . . . . . . 7 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → [(𝑓𝑥) / 𝑦]𝜑)
26 rspesbca 3844 . . . . . . 7 (((𝑓𝑥) ∈ ran 𝑓[(𝑓𝑥) / 𝑦]𝜑) → ∃𝑦 ∈ ran 𝑓𝜑)
2723, 25, 26syl2anc 584 . . . . . 6 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → ∃𝑦 ∈ ran 𝑓𝜑)
2827ex 412 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴 → ∃𝑦 ∈ ran 𝑓𝜑))
2916, 28ralrimi 3235 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
30 nfv 1914 . . . . . 6 𝑦 𝑓:𝐴𝐵
31 nfcv 2891 . . . . . . 7 𝑦𝐴
3231, 1nfralw 3285 . . . . . 6 𝑦𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑
3330, 32nfan 1899 . . . . 5 𝑦(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
34 fvelrnb 6921 . . . . . . . 8 (𝑓 Fn 𝐴 → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
358, 34syl 17 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
3635adantr 480 . . . . . 6 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
37 rsp 3225 . . . . . . . . 9 (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 → (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))
3837adantl 481 . . . . . . . 8 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))
392eqcoms 2737 . . . . . . . . 9 ((𝑓𝑥) = 𝑦 → (𝜑[(𝑓𝑥) / 𝑦]𝜑))
4039biimprcd 250 . . . . . . . 8 ([(𝑓𝑥) / 𝑦]𝜑 → ((𝑓𝑥) = 𝑦𝜑))
4138, 40syl6 35 . . . . . . 7 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴 → ((𝑓𝑥) = 𝑦𝜑)))
4216, 41reximdai 3239 . . . . . 6 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (∃𝑥𝐴 (𝑓𝑥) = 𝑦 → ∃𝑥𝐴 𝜑))
4336, 42sylbid 240 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑦 ∈ ran 𝑓 → ∃𝑥𝐴 𝜑))
4433, 43ralrimi 3235 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)
455rnex 7886 . . . . 5 ran 𝑓 ∈ V
46 breq1 5110 . . . . . . 7 (𝑐 = ran 𝑓 → (𝑐𝐴 ↔ ran 𝑓𝐴))
47 sseq1 3972 . . . . . . 7 (𝑐 = ran 𝑓 → (𝑐𝐵 ↔ ran 𝑓𝐵))
4846, 47anbi12d 632 . . . . . 6 (𝑐 = ran 𝑓 → ((𝑐𝐴𝑐𝐵) ↔ (ran 𝑓𝐴 ∧ ran 𝑓𝐵)))
49 rexeq 3295 . . . . . . . 8 (𝑐 = ran 𝑓 → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ ran 𝑓𝜑))
5049ralbidv 3156 . . . . . . 7 (𝑐 = ran 𝑓 → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
51 raleq 3296 . . . . . . 7 (𝑐 = ran 𝑓 → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))
5250, 51anbi12d 632 . . . . . 6 (𝑐 = ran 𝑓 → ((∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)))
5348, 52anbi12d 632 . . . . 5 (𝑐 = ran 𝑓 → (((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)) ↔ ((ran 𝑓𝐴 ∧ ran 𝑓𝐵) ∧ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))))
5445, 53spcev 3572 . . . 4 (((ran 𝑓𝐴 ∧ ran 𝑓𝐵) ∧ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5511, 13, 29, 44, 54syl22anc 838 . . 3 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5655exlimiv 1930 . 2 (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
573, 56syl 17 1 ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  [wsbc 3753  wss 3914   class class class wbr 5107  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-r1 9717  df-rank 9718  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator