Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexdom Structured version   Visualization version   GIF version

Theorem indexdom 37758
Description: If for every element of an indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a subset of 𝐵 consisting only of those elements which are indexed by 𝐴, and which is dominated by the set 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexdom ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
Distinct variable groups:   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3785 . . 3 𝑦[(𝑓𝑥) / 𝑦]𝜑
2 sbceq1a 3776 . . 3 (𝑦 = (𝑓𝑥) → (𝜑[(𝑓𝑥) / 𝑦]𝜑))
31, 2ac6gf 37756 . 2 ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
4 fdm 6715 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
5 vex 3463 . . . . . . . 8 𝑓 ∈ V
65dmex 7905 . . . . . . 7 dom 𝑓 ∈ V
74, 6eqeltrrdi 2843 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
8 ffn 6706 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
9 fnrndomg 10550 . . . . . 6 (𝐴 ∈ V → (𝑓 Fn 𝐴 → ran 𝑓𝐴))
107, 8, 9sylc 65 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐴)
1110adantr 480 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ran 𝑓𝐴)
12 frn 6713 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
1312adantr 480 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ran 𝑓𝐵)
14 nfv 1914 . . . . . 6 𝑥 𝑓:𝐴𝐵
15 nfra1 3266 . . . . . 6 𝑥𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑
1614, 15nfan 1899 . . . . 5 𝑥(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
17 ffun 6709 . . . . . . . . . 10 (𝑓:𝐴𝐵 → Fun 𝑓)
1817adantr 480 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → Fun 𝑓)
194eleq2d 2820 . . . . . . . . . 10 (𝑓:𝐴𝐵 → (𝑥 ∈ dom 𝑓𝑥𝐴))
2019biimpar 477 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝑓)
21 fvelrn 7066 . . . . . . . . 9 ((Fun 𝑓𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ran 𝑓)
2218, 20, 21syl2anc 584 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
2322adantlr 715 . . . . . . 7 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
24 rspa 3231 . . . . . . . 8 ((∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑𝑥𝐴) → [(𝑓𝑥) / 𝑦]𝜑)
2524adantll 714 . . . . . . 7 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → [(𝑓𝑥) / 𝑦]𝜑)
26 rspesbca 3856 . . . . . . 7 (((𝑓𝑥) ∈ ran 𝑓[(𝑓𝑥) / 𝑦]𝜑) → ∃𝑦 ∈ ran 𝑓𝜑)
2723, 25, 26syl2anc 584 . . . . . 6 (((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) ∧ 𝑥𝐴) → ∃𝑦 ∈ ran 𝑓𝜑)
2827ex 412 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴 → ∃𝑦 ∈ ran 𝑓𝜑))
2916, 28ralrimi 3240 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
30 nfv 1914 . . . . . 6 𝑦 𝑓:𝐴𝐵
31 nfcv 2898 . . . . . . 7 𝑦𝐴
3231, 1nfralw 3291 . . . . . 6 𝑦𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑
3330, 32nfan 1899 . . . . 5 𝑦(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
34 fvelrnb 6939 . . . . . . . 8 (𝑓 Fn 𝐴 → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
358, 34syl 17 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
3635adantr 480 . . . . . 6 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥𝐴 (𝑓𝑥) = 𝑦))
37 rsp 3230 . . . . . . . . 9 (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 → (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))
3837adantl 481 . . . . . . . 8 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))
392eqcoms 2743 . . . . . . . . 9 ((𝑓𝑥) = 𝑦 → (𝜑[(𝑓𝑥) / 𝑦]𝜑))
4039biimprcd 250 . . . . . . . 8 ([(𝑓𝑥) / 𝑦]𝜑 → ((𝑓𝑥) = 𝑦𝜑))
4138, 40syl6 35 . . . . . . 7 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑥𝐴 → ((𝑓𝑥) = 𝑦𝜑)))
4216, 41reximdai 3244 . . . . . 6 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (∃𝑥𝐴 (𝑓𝑥) = 𝑦 → ∃𝑥𝐴 𝜑))
4336, 42sylbid 240 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → (𝑦 ∈ ran 𝑓 → ∃𝑥𝐴 𝜑))
4433, 43ralrimi 3240 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)
455rnex 7906 . . . . 5 ran 𝑓 ∈ V
46 breq1 5122 . . . . . . 7 (𝑐 = ran 𝑓 → (𝑐𝐴 ↔ ran 𝑓𝐴))
47 sseq1 3984 . . . . . . 7 (𝑐 = ran 𝑓 → (𝑐𝐵 ↔ ran 𝑓𝐵))
4846, 47anbi12d 632 . . . . . 6 (𝑐 = ran 𝑓 → ((𝑐𝐴𝑐𝐵) ↔ (ran 𝑓𝐴 ∧ ran 𝑓𝐵)))
49 rexeq 3301 . . . . . . . 8 (𝑐 = ran 𝑓 → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ ran 𝑓𝜑))
5049ralbidv 3163 . . . . . . 7 (𝑐 = ran 𝑓 → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
51 raleq 3302 . . . . . . 7 (𝑐 = ran 𝑓 → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))
5250, 51anbi12d 632 . . . . . 6 (𝑐 = ran 𝑓 → ((∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)))
5348, 52anbi12d 632 . . . . 5 (𝑐 = ran 𝑓 → (((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)) ↔ ((ran 𝑓𝐴 ∧ ran 𝑓𝐵) ∧ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))))
5445, 53spcev 3585 . . . 4 (((ran 𝑓𝐴 ∧ ran 𝑓𝐵) ∧ (∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5511, 13, 29, 44, 54syl22anc 838 . . 3 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
5655exlimiv 1930 . 2 (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
573, 56syl 17 1 ((𝐴𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐((𝑐𝐴𝑐𝐵) ∧ (∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  [wsbc 3765  wss 3926   class class class wbr 5119  dom cdm 5654  ran crn 5655  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  cdom 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-r1 9778  df-rank 9779  df-card 9953  df-acn 9956  df-ac 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator