MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprcreg Structured version   Visualization version   GIF version

Theorem sucprcreg 9360
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.)
Assertion
Ref Expression
sucprcreg 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)

Proof of Theorem sucprcreg
StepHypRef Expression
1 sucprc 6341 . 2 𝐴 ∈ V → suc 𝐴 = 𝐴)
2 elirr 9356 . . . 4 ¬ 𝐴𝐴
3 df-suc 6272 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
43eqeq1i 2743 . . . . . 6 (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
5 ssequn2 4117 . . . . . 6 ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
64, 5sylbb2 237 . . . . 5 (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴)
7 snidg 4595 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
8 ssel2 3916 . . . . 5 (({𝐴} ⊆ 𝐴𝐴 ∈ {𝐴}) → 𝐴𝐴)
96, 7, 8syl2an 596 . . . 4 ((suc 𝐴 = 𝐴𝐴 ∈ V) → 𝐴𝐴)
102, 9mto 196 . . 3 ¬ (suc 𝐴 = 𝐴𝐴 ∈ V)
1110imnani 401 . 2 (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V)
121, 11impbii 208 1 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  wss 3887  {csn 4561  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-suc 6272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator