Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucprcreg | Structured version Visualization version GIF version |
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
Ref | Expression |
---|---|
sucprcreg | ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucprc 6326 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
2 | elirr 9286 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
3 | df-suc 6257 | . . . . . . 7 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | eqeq1i 2743 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) |
5 | ssequn2 4113 | . . . . . 6 ⊢ ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) | |
6 | 4, 5 | sylbb2 237 | . . . . 5 ⊢ (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴) |
7 | snidg 4592 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
8 | ssel2 3912 | . . . . 5 ⊢ (({𝐴} ⊆ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐴) | |
9 | 6, 7, 8 | syl2an 595 | . . . 4 ⊢ ((suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝐴) |
10 | 2, 9 | mto 196 | . . 3 ⊢ ¬ (suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) |
11 | 10 | imnani 400 | . 2 ⊢ (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V) |
12 | 1, 11 | impbii 208 | 1 ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 {csn 4558 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-suc 6257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |