| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucprcreg | Structured version Visualization version GIF version | ||
| Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
| Ref | Expression |
|---|---|
| sucprcreg | ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucprc 6392 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 2 | elirr 9495 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 3 | df-suc 6320 | . . . . . . 7 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 4 | 3 | eqeq1i 2738 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) |
| 5 | ssequn2 4140 | . . . . . 6 ⊢ ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) | |
| 6 | 4, 5 | sylbb2 238 | . . . . 5 ⊢ (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴) |
| 7 | snidg 4614 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
| 8 | ssel2 3926 | . . . . 5 ⊢ (({𝐴} ⊆ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐴) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . 4 ⊢ ((suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝐴) |
| 10 | 2, 9 | mto 197 | . . 3 ⊢ ¬ (suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) |
| 11 | 10 | imnani 400 | . 2 ⊢ (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V) |
| 12 | 1, 11 | impbii 209 | 1 ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∪ cun 3897 ⊆ wss 3899 {csn 4577 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-pr 5374 ax-reg 9488 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-sn 4578 df-suc 6320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |