MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprcreg Structured version   Visualization version   GIF version

Theorem sucprcreg 9500
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.)
Assertion
Ref Expression
sucprcreg 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)

Proof of Theorem sucprcreg
StepHypRef Expression
1 sucprc 6392 . 2 𝐴 ∈ V → suc 𝐴 = 𝐴)
2 elirr 9495 . . . 4 ¬ 𝐴𝐴
3 df-suc 6320 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
43eqeq1i 2738 . . . . . 6 (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
5 ssequn2 4140 . . . . . 6 ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴)
64, 5sylbb2 238 . . . . 5 (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴)
7 snidg 4614 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
8 ssel2 3926 . . . . 5 (({𝐴} ⊆ 𝐴𝐴 ∈ {𝐴}) → 𝐴𝐴)
96, 7, 8syl2an 596 . . . 4 ((suc 𝐴 = 𝐴𝐴 ∈ V) → 𝐴𝐴)
102, 9mto 197 . . 3 ¬ (suc 𝐴 = 𝐴𝐴 ∈ V)
1110imnani 400 . 2 (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V)
121, 11impbii 209 1 𝐴 ∈ V ↔ suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  cun 3897  wss 3899  {csn 4577  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-pr 5374  ax-reg 9488
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-sn 4578  df-suc 6320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator