| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcld | Structured version Visualization version GIF version | ||
| Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| saldifcld.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saldifcld.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saldifcld | ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | saldifcld.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | saldifcld.2 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
| 3 | saldifcl 46315 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3928 ∪ cuni 4888 SAlgcsalg 46304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-pw 4582 df-uni 4889 df-salg 46305 |
| This theorem is referenced by: subsalsal 46355 salpreimagelt 46703 salpreimalegt 46705 smfresal 46784 |
| Copyright terms: Public domain | W3C validator |