Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcld Structured version   Visualization version   GIF version

Theorem saldifcld 46268
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
saldifcld.1 (𝜑𝑆 ∈ SAlg)
saldifcld.2 (𝜑𝐸𝑆)
Assertion
Ref Expression
saldifcld (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem saldifcld
StepHypRef Expression
1 saldifcld.1 . 2 (𝜑𝑆 ∈ SAlg)
2 saldifcld.2 . 2 (𝜑𝐸𝑆)
3 saldifcl 46240 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
41, 2, 3syl2anc 583 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973   cuni 4931  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-ss 3993  df-pw 4624  df-uni 4932  df-salg 46230
This theorem is referenced by:  subsalsal  46280  salpreimagelt  46628  salpreimalegt  46630  smfresal  46709
  Copyright terms: Public domain W3C validator