Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimagelt | Structured version Visualization version GIF version |
Description: If all the preimages of left-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (iv) implies (i) in Proposition 121B of [Fremlin1] p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimagelt.x | ⊢ Ⅎ𝑥𝜑 |
salpreimagelt.a | ⊢ Ⅎ𝑎𝜑 |
salpreimagelt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimagelt.u | ⊢ 𝐴 = ∪ 𝑆 |
salpreimagelt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimagelt.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) |
salpreimagelt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimagelt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimagelt.u | . . . . . 6 ⊢ 𝐴 = ∪ 𝑆 | |
2 | 1 | eqcomi 2747 | . . . . 5 ⊢ ∪ 𝑆 = 𝐴 |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑆 = 𝐴) |
4 | 3 | difeq1d 4052 | . . 3 ⊢ (𝜑 → (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) = (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵})) |
5 | salpreimagelt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | salpreimagelt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
7 | salpreimagelt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
8 | 7 | rexrd 10956 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
9 | 5, 6, 8 | preimagelt 44126 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) = {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶}) |
10 | 4, 9 | eqtr2d 2779 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} = (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵})) |
11 | salpreimagelt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
12 | 7 | ancli 548 | . . . 4 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ ℝ)) |
13 | salpreimagelt.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
14 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑎𝐶 | |
15 | 14 | nfel1 2922 | . . . . . . 7 ⊢ Ⅎ𝑎 𝐶 ∈ ℝ |
16 | 13, 15 | nfan 1903 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ 𝐶 ∈ ℝ) |
17 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆 | |
18 | 16, 17 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
19 | eleq1 2826 | . . . . . . 7 ⊢ (𝑎 = 𝐶 → (𝑎 ∈ ℝ ↔ 𝐶 ∈ ℝ)) | |
20 | 19 | anbi2d 628 | . . . . . 6 ⊢ (𝑎 = 𝐶 → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ 𝐶 ∈ ℝ))) |
21 | breq1 5073 | . . . . . . . 8 ⊢ (𝑎 = 𝐶 → (𝑎 ≤ 𝐵 ↔ 𝐶 ≤ 𝐵)) | |
22 | 21 | rabbidv 3404 | . . . . . . 7 ⊢ (𝑎 = 𝐶 → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) |
23 | 22 | eleq1d 2823 | . . . . . 6 ⊢ (𝑎 = 𝐶 → ({𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆)) |
24 | 20, 23 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝐶 → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) ↔ ((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆))) |
25 | salpreimagelt.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝑎 ≤ 𝐵} ∈ 𝑆) | |
26 | 18, 24, 25 | vtoclg1f 3494 | . . . 4 ⊢ (𝐶 ∈ ℝ → ((𝜑 ∧ 𝐶 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆)) |
27 | 7, 12, 26 | sylc 65 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵} ∈ 𝑆) |
28 | 11, 27 | saldifcld 43776 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ {𝑥 ∈ 𝐴 ∣ 𝐶 ≤ 𝐵}) ∈ 𝑆) |
29 | 10, 28 | eqeltrd 2839 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∪ cuni 4836 class class class wbr 5070 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 df-salg 43740 |
This theorem is referenced by: salpreimalelt 44152 salpreimagtlt 44153 issmfgelem 44191 |
Copyright terms: Public domain | W3C validator |