Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salpreimalegt Structured version   Visualization version   GIF version

Theorem salpreimalegt 46705
Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of left-open, unbounded above intervals, belong to the sigma-algebra. (ii) implies (iii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salpreimalegt.x 𝑥𝜑
salpreimalegt.a 𝑎𝜑
salpreimalegt.s (𝜑𝑆 ∈ SAlg)
salpreimalegt.u 𝐴 = 𝑆
salpreimalegt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
salpreimalegt.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
salpreimalegt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
salpreimalegt (𝜑 → {𝑥𝐴𝐶 < 𝐵} ∈ 𝑆)
Distinct variable groups:   𝐴,𝑎,𝑥   𝐵,𝑎   𝐶,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem salpreimalegt
StepHypRef Expression
1 salpreimalegt.u . . . . . 6 𝐴 = 𝑆
21eqcomi 2745 . . . . 5 𝑆 = 𝐴
32a1i 11 . . . 4 (𝜑 𝑆 = 𝐴)
43difeq1d 4105 . . 3 (𝜑 → ( 𝑆 ∖ {𝑥𝐴𝐵𝐶}) = (𝐴 ∖ {𝑥𝐴𝐵𝐶}))
5 salpreimalegt.x . . . 4 𝑥𝜑
6 salpreimalegt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
7 salpreimalegt.c . . . . 5 (𝜑𝐶 ∈ ℝ)
87rexrd 11290 . . . 4 (𝜑𝐶 ∈ ℝ*)
95, 6, 8preimalegt 46696 . . 3 (𝜑 → (𝐴 ∖ {𝑥𝐴𝐵𝐶}) = {𝑥𝐴𝐶 < 𝐵})
104, 9eqtr2d 2772 . 2 (𝜑 → {𝑥𝐴𝐶 < 𝐵} = ( 𝑆 ∖ {𝑥𝐴𝐵𝐶}))
11 salpreimalegt.s . . 3 (𝜑𝑆 ∈ SAlg)
127ancli 548 . . . 4 (𝜑 → (𝜑𝐶 ∈ ℝ))
13 salpreimalegt.a . . . . . . 7 𝑎𝜑
14 nfv 1914 . . . . . . 7 𝑎 𝐶 ∈ ℝ
1513, 14nfan 1899 . . . . . 6 𝑎(𝜑𝐶 ∈ ℝ)
16 nfv 1914 . . . . . 6 𝑎{𝑥𝐴𝐵𝐶} ∈ 𝑆
1715, 16nfim 1896 . . . . 5 𝑎((𝜑𝐶 ∈ ℝ) → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
18 eleq1 2823 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 ∈ ℝ ↔ 𝐶 ∈ ℝ))
1918anbi2d 630 . . . . . 6 (𝑎 = 𝐶 → ((𝜑𝑎 ∈ ℝ) ↔ (𝜑𝐶 ∈ ℝ)))
20 breq2 5128 . . . . . . . 8 (𝑎 = 𝐶 → (𝐵𝑎𝐵𝐶))
2120rabbidv 3428 . . . . . . 7 (𝑎 = 𝐶 → {𝑥𝐴𝐵𝑎} = {𝑥𝐴𝐵𝐶})
2221eleq1d 2820 . . . . . 6 (𝑎 = 𝐶 → ({𝑥𝐴𝐵𝑎} ∈ 𝑆 ↔ {𝑥𝐴𝐵𝐶} ∈ 𝑆))
2319, 22imbi12d 344 . . . . 5 (𝑎 = 𝐶 → (((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆) ↔ ((𝜑𝐶 ∈ ℝ) → {𝑥𝐴𝐵𝐶} ∈ 𝑆)))
24 salpreimalegt.p . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴𝐵𝑎} ∈ 𝑆)
2517, 23, 24vtoclg1f 3554 . . . 4 (𝐶 ∈ ℝ → ((𝜑𝐶 ∈ ℝ) → {𝑥𝐴𝐵𝐶} ∈ 𝑆))
267, 12, 25sylc 65 . . 3 (𝜑 → {𝑥𝐴𝐵𝐶} ∈ 𝑆)
2711, 26saldifcld 46343 . 2 (𝜑 → ( 𝑆 ∖ {𝑥𝐴𝐵𝐶}) ∈ 𝑆)
2810, 27eqeltrd 2835 1 (𝜑 → {𝑥𝐴𝐶 < 𝐵} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  {crab 3420  cdif 3928   cuni 4888   class class class wbr 5124  cr 11133  *cxr 11273   < clt 11274  cle 11275  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-xr 11278  df-le 11280  df-salg 46305
This theorem is referenced by:  salpreimalelt  46725  issmfgt  46752
  Copyright terms: Public domain W3C validator