![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl | Structured version Visualization version GIF version |
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saldifcl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 4115 | . . 3 ⊢ (𝑦 = 𝐸 → (∪ 𝑆 ∖ 𝑦) = (∪ 𝑆 ∖ 𝐸)) | |
2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑦 = 𝐸 → ((∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆)) |
3 | issal 45328 | . . . . 5 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
4 | 3 | ibi 266 | . . . 4 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
5 | 4 | simp2d 1141 | . . 3 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
6 | 5 | adantr 479 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
7 | simpr 483 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
8 | 2, 6, 7 | rspcdva 3612 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 class class class wbr 5147 ωcom 7857 ≼ cdom 8939 SAlgcsalg 45322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 df-pw 4603 df-uni 4908 df-salg 45323 |
This theorem is referenced by: salincl 45338 saluni 45339 saliinclf 45340 saldifcl2 45342 intsal 45344 saldifcld 45361 |
Copyright terms: Public domain | W3C validator |