| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl | Structured version Visualization version GIF version | ||
| Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saldifcl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 4086 | . . 3 ⊢ (𝑦 = 𝐸 → (∪ 𝑆 ∖ 𝑦) = (∪ 𝑆 ∖ 𝐸)) | |
| 2 | 1 | eleq1d 2814 | . 2 ⊢ (𝑦 = 𝐸 → ((∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆)) |
| 3 | issal 46319 | . . . . 5 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 4 | 3 | ibi 267 | . . . 4 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 5 | 4 | simp2d 1143 | . . 3 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
| 7 | simpr 484 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
| 8 | 2, 6, 7 | rspcdva 3592 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 class class class wbr 5110 ωcom 7845 ≼ cdom 8919 SAlgcsalg 46313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-ss 3934 df-pw 4568 df-uni 4875 df-salg 46314 |
| This theorem is referenced by: salincl 46329 saluni 46330 saliinclf 46331 saldifcl2 46333 intsal 46335 saldifcld 46352 |
| Copyright terms: Public domain | W3C validator |