Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl Structured version   Visualization version   GIF version

Theorem saldifcl 46348
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem saldifcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difeq2 4095 . . 3 (𝑦 = 𝐸 → ( 𝑆𝑦) = ( 𝑆𝐸))
21eleq1d 2819 . 2 (𝑦 = 𝐸 → (( 𝑆𝑦) ∈ 𝑆 ↔ ( 𝑆𝐸) ∈ 𝑆))
3 issal 46343 . . . . 5 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
43ibi 267 . . . 4 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
54simp2d 1143 . . 3 (𝑆 ∈ SAlg → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
65adantr 480 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
7 simpr 484 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸𝑆)
82, 6, 7rspcdva 3602 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cdif 3923  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  ωcom 7861  cdom 8957  SAlgcsalg 46337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-ss 3943  df-pw 4577  df-uni 4884  df-salg 46338
This theorem is referenced by:  salincl  46353  saluni  46354  saliinclf  46355  saldifcl2  46357  intsal  46359  saldifcld  46376
  Copyright terms: Public domain W3C validator