Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl Structured version   Visualization version   GIF version

Theorem saldifcl 43860
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem saldifcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difeq2 4051 . . 3 (𝑦 = 𝐸 → ( 𝑆𝑦) = ( 𝑆𝐸))
21eleq1d 2823 . 2 (𝑦 = 𝐸 → (( 𝑆𝑦) ∈ 𝑆 ↔ ( 𝑆𝐸) ∈ 𝑆))
3 issal 43855 . . . . 5 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
43ibi 266 . . . 4 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
54simp2d 1142 . . 3 (𝑆 ∈ SAlg → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
65adantr 481 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
7 simpr 485 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸𝑆)
82, 6, 7rspcdva 3562 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ωcom 7712  cdom 8731  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-salg 43850
This theorem is referenced by:  salincl  43864  saluni  43865  saliincl  43866  saldifcl2  43867  intsal  43869  saldifcld  43886
  Copyright terms: Public domain W3C validator