Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl Structured version   Visualization version   GIF version

Theorem saldifcl 46240
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem saldifcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difeq2 4143 . . 3 (𝑦 = 𝐸 → ( 𝑆𝑦) = ( 𝑆𝐸))
21eleq1d 2829 . 2 (𝑦 = 𝐸 → (( 𝑆𝑦) ∈ 𝑆 ↔ ( 𝑆𝐸) ∈ 𝑆))
3 issal 46235 . . . . 5 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
43ibi 267 . . . 4 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
54simp2d 1143 . . 3 (𝑆 ∈ SAlg → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
65adantr 480 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
7 simpr 484 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸𝑆)
82, 6, 7rspcdva 3636 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ωcom 7903  cdom 9001  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-ss 3993  df-pw 4624  df-uni 4932  df-salg 46230
This theorem is referenced by:  salincl  46245  saluni  46246  saliinclf  46247  saldifcl2  46249  intsal  46251  saldifcld  46268
  Copyright terms: Public domain W3C validator