Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl Structured version   Visualization version   GIF version

Theorem saldifcl 46320
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem saldifcl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difeq2 4071 . . 3 (𝑦 = 𝐸 → ( 𝑆𝑦) = ( 𝑆𝐸))
21eleq1d 2813 . 2 (𝑦 = 𝐸 → (( 𝑆𝑦) ∈ 𝑆 ↔ ( 𝑆𝐸) ∈ 𝑆))
3 issal 46315 . . . . 5 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
43ibi 267 . . . 4 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
54simp2d 1143 . . 3 (𝑆 ∈ SAlg → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
65adantr 480 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆)
7 simpr 484 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸𝑆)
82, 6, 7rspcdva 3578 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3900  c0 4284  𝒫 cpw 4551   cuni 4858   class class class wbr 5092  ωcom 7799  cdom 8870  SAlgcsalg 46309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-ss 3920  df-pw 4553  df-uni 4859  df-salg 46310
This theorem is referenced by:  salincl  46325  saluni  46326  saliinclf  46327  saldifcl2  46329  intsal  46331  saldifcld  46348
  Copyright terms: Public domain W3C validator