Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmvolsal | Structured version Visualization version GIF version |
Description: Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
dmvolsal | ⊢ dom vol ∈ SAlg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10709 | . . . . . 6 ⊢ ℝ ∈ V | |
2 | 1 | pwex 5248 | . . . . 5 ⊢ 𝒫 ℝ ∈ V |
3 | dmvolss 43091 | . . . . 5 ⊢ dom vol ⊆ 𝒫 ℝ | |
4 | 2, 3 | ssexi 5191 | . . . 4 ⊢ dom vol ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → dom vol ∈ V) |
6 | 0mbl 24294 | . . . 4 ⊢ ∅ ∈ dom vol | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → ∅ ∈ dom vol) |
8 | unidmvol 24296 | . . . 4 ⊢ ∪ dom vol = ℝ | |
9 | 8 | eqcomi 2748 | . . 3 ⊢ ℝ = ∪ dom vol |
10 | cmmbl 24289 | . . . 4 ⊢ (𝑦 ∈ dom vol → (ℝ ∖ 𝑦) ∈ dom vol) | |
11 | 10 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ dom vol) → (ℝ ∖ 𝑦) ∈ dom vol) |
12 | ffvelrn 6862 | . . . . . 6 ⊢ ((𝑒:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝑒‘𝑛) ∈ dom vol) | |
13 | 12 | ralrimiva 3097 | . . . . 5 ⊢ (𝑒:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
14 | iunmbl 24308 | . . . . 5 ⊢ (∀𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑒:ℕ⟶dom vol → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
16 | 15 | adantl 485 | . . 3 ⊢ ((⊤ ∧ 𝑒:ℕ⟶dom vol) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
17 | 5, 7, 9, 11, 16 | issalnnd 43449 | . 2 ⊢ (⊤ → dom vol ∈ SAlg) |
18 | 17 | mptru 1549 | 1 ⊢ dom vol ∈ SAlg |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 ∈ wcel 2114 ∀wral 3054 Vcvv 3399 ∖ cdif 3841 ∅c0 4212 𝒫 cpw 4489 ∪ cuni 4797 ∪ ciun 4882 dom cdm 5526 ⟶wf 6336 ‘cfv 6340 ℝcr 10617 ℕcn 11719 volcvol 24218 SAlgcsalg 43414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-inf2 9180 ax-cc 9938 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-disj 4997 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-2o 8135 df-er 8323 df-map 8442 df-pm 8443 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-sup 8982 df-inf 8983 df-oi 9050 df-dju 9406 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-n0 11980 df-z 12066 df-uz 12328 df-q 12434 df-rp 12476 df-xadd 12594 df-ioo 12828 df-ico 12830 df-icc 12831 df-fz 12985 df-fzo 13128 df-fl 13256 df-seq 13464 df-exp 13525 df-hash 13786 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-clim 14938 df-rlim 14939 df-sum 15139 df-xmet 20213 df-met 20214 df-ovol 24219 df-vol 24220 df-salg 43415 |
This theorem is referenced by: volmea 43577 mbfresmf 43837 smfmbfcex 43857 |
Copyright terms: Public domain | W3C validator |