Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmvolsal Structured version   Visualization version   GIF version

Theorem dmvolsal 45615
Description: Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
dmvolsal dom vol ∈ SAlg

Proof of Theorem dmvolsal
Dummy variables 𝑒 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11200 . . . . . 6 ℝ ∈ V
21pwex 5371 . . . . 5 𝒫 ℝ ∈ V
3 dmvolss 45254 . . . . 5 dom vol ⊆ 𝒫 ℝ
42, 3ssexi 5315 . . . 4 dom vol ∈ V
54a1i 11 . . 3 (⊤ → dom vol ∈ V)
6 0mbl 25419 . . . 4 ∅ ∈ dom vol
76a1i 11 . . 3 (⊤ → ∅ ∈ dom vol)
8 unidmvol 25421 . . . 4 dom vol = ℝ
98eqcomi 2735 . . 3 ℝ = dom vol
10 cmmbl 25414 . . . 4 (𝑦 ∈ dom vol → (ℝ ∖ 𝑦) ∈ dom vol)
1110adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ dom vol) → (ℝ ∖ 𝑦) ∈ dom vol)
12 ffvelcdm 7076 . . . . . 6 ((𝑒:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ dom vol)
1312ralrimiva 3140 . . . . 5 (𝑒:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝑒𝑛) ∈ dom vol)
14 iunmbl 25433 . . . . 5 (∀𝑛 ∈ ℕ (𝑒𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝑒𝑛) ∈ dom vol)
1513, 14syl 17 . . . 4 (𝑒:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝑒𝑛) ∈ dom vol)
1615adantl 481 . . 3 ((⊤ ∧ 𝑒:ℕ⟶dom vol) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ dom vol)
175, 7, 9, 11, 16issalnnd 45614 . 2 (⊤ → dom vol ∈ SAlg)
1817mptru 1540 1 dom vol ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:  wtru 1534  wcel 2098  wral 3055  Vcvv 3468  cdif 3940  c0 4317  𝒫 cpw 4597   cuni 4902   ciun 4990  dom cdm 5669  wf 6532  cfv 6536  cr 11108  cn 12213  volcvol 25343  SAlgcsalg 45577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cc 10429  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934  df-rp 12978  df-xadd 13096  df-ioo 13331  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-fl 13760  df-seq 13970  df-exp 14031  df-hash 14294  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-xmet 21229  df-met 21230  df-ovol 25344  df-vol 25345  df-salg 45578
This theorem is referenced by:  volmea  45743  mbfresmf  46008  smfmbfcex  46029
  Copyright terms: Public domain W3C validator