![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmvolsal | Structured version Visualization version GIF version |
Description: Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
dmvolsal | ⊢ dom vol ∈ SAlg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10228 | . . . . . 6 ⊢ ℝ ∈ V | |
2 | 1 | pwex 4976 | . . . . 5 ⊢ 𝒫 ℝ ∈ V |
3 | dmvolss 40713 | . . . . 5 ⊢ dom vol ⊆ 𝒫 ℝ | |
4 | 2, 3 | ssexi 4934 | . . . 4 ⊢ dom vol ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → dom vol ∈ V) |
6 | 0mbl 23526 | . . . 4 ⊢ ∅ ∈ dom vol | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → ∅ ∈ dom vol) |
8 | unidmvol 23528 | . . . 4 ⊢ ∪ dom vol = ℝ | |
9 | 8 | eqcomi 2779 | . . 3 ⊢ ℝ = ∪ dom vol |
10 | cmmbl 23521 | . . . 4 ⊢ (𝑦 ∈ dom vol → (ℝ ∖ 𝑦) ∈ dom vol) | |
11 | 10 | adantl 467 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ dom vol) → (ℝ ∖ 𝑦) ∈ dom vol) |
12 | ffvelrn 6500 | . . . . . 6 ⊢ ((𝑒:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝑒‘𝑛) ∈ dom vol) | |
13 | 12 | ralrimiva 3114 | . . . . 5 ⊢ (𝑒:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
14 | iunmbl 23540 | . . . . 5 ⊢ (∀𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑒:ℕ⟶dom vol → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
16 | 15 | adantl 467 | . . 3 ⊢ ((⊤ ∧ 𝑒:ℕ⟶dom vol) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ dom vol) |
17 | 5, 7, 9, 11, 16 | issalnnd 41074 | . 2 ⊢ (⊤ → dom vol ∈ SAlg) |
18 | 17 | trud 1640 | 1 ⊢ dom vol ∈ SAlg |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1631 ∈ wcel 2144 ∀wral 3060 Vcvv 3349 ∖ cdif 3718 ∅c0 4061 𝒫 cpw 4295 ∪ cuni 4572 ∪ ciun 4652 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 ℝcr 10136 ℕcn 11221 volcvol 23450 SAlgcsalg 41039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cc 9458 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-disj 4753 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-xadd 12151 df-ioo 12383 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-rlim 14427 df-sum 14624 df-xmet 19953 df-met 19954 df-ovol 23451 df-vol 23452 df-salg 41040 |
This theorem is referenced by: volmea 41202 mbfresmf 41462 smfmbfcex 41482 |
Copyright terms: Public domain | W3C validator |