Step | Hyp | Ref
| Expression |
1 | | nfeqf2 2377 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑡 → Ⅎ𝑥 𝑦 = 𝑡) |
2 | | nfnf1 2153 |
. . . . . . 7
⊢
Ⅎ𝑥Ⅎ𝑥 𝑦 = 𝑡 |
3 | | id 22 |
. . . . . . 7
⊢
(Ⅎ𝑥 𝑦 = 𝑡 → Ⅎ𝑥 𝑦 = 𝑡) |
4 | 2, 3 | nfan1 2196 |
. . . . . 6
⊢
Ⅎ𝑥(Ⅎ𝑥 𝑦 = 𝑡 ∧ 𝑦 = 𝑡) |
5 | | equequ2 2030 |
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) |
6 | 5 | imbi1d 341 |
. . . . . . 7
⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
7 | 6 | adantl 481 |
. . . . . 6
⊢
((Ⅎ𝑥 𝑦 = 𝑡 ∧ 𝑦 = 𝑡) → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
8 | 4, 7 | albid 2218 |
. . . . 5
⊢
((Ⅎ𝑥 𝑦 = 𝑡 ∧ 𝑦 = 𝑡) → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
9 | 8 | pm5.74da 800 |
. . . 4
⊢
(Ⅎ𝑥 𝑦 = 𝑡 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
10 | 1, 9 | syl 17 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑡 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
11 | 10 | albidv 1924 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑡 → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
12 | | df-sb 2069 |
. 2
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
13 | | ax6ev 1974 |
. . . 4
⊢
∃𝑦 𝑦 = 𝑡 |
14 | 13 | a1bi 362 |
. . 3
⊢
(∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
15 | | 19.23v 1946 |
. . 3
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
16 | 14, 15 | bitr4i 277 |
. 2
⊢
(∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
17 | 11, 12, 16 | 3bitr4g 313 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |