![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcne12 | Structured version Visualization version GIF version |
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcne12 | ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2944 | . . . . . 6 ⊢ (¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) | |
2 | 1 | sbcbii 3837 | . . . . 5 ⊢ ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) |
4 | sbcng 3827 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶)) | |
5 | sbceqg 4409 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
6 | nne 2944 | . . . . 5 ⊢ (¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
7 | 5, 6 | bitr4di 288 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
8 | 3, 4, 7 | 3bitr3d 308 | . . 3 ⊢ (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
9 | 8 | con4bid 316 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
10 | sbcex 3787 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 → 𝐴 ∈ V) | |
11 | 10 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶) |
12 | csbprc 4406 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
13 | csbprc 4406 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
14 | 12, 13 | eqtr4d 2775 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
15 | 14, 6 | sylibr 233 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
16 | 11, 15 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 [wsbc 3777 ⦋csb 3893 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-nul 4323 |
This theorem is referenced by: 2nreu 4441 disjdsct 31919 cdlemkid3N 39799 cdlemkid4 39800 |
Copyright terms: Public domain | W3C validator |