| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcne12 | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcne12 | ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2931 | . . . . . 6 ⊢ (¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) | |
| 2 | 1 | sbcbii 3818 | . . . . 5 ⊢ ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) |
| 4 | sbcng 3809 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶)) | |
| 5 | sbceqg 4383 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 6 | nne 2931 | . . . . 5 ⊢ (¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 7 | 5, 6 | bitr4di 289 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 8 | 3, 4, 7 | 3bitr3d 309 | . . 3 ⊢ (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 9 | 8 | con4bid 317 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 10 | sbcex 3771 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 → 𝐴 ∈ V) | |
| 11 | 10 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶) |
| 12 | csbprc 4380 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
| 13 | csbprc 4380 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
| 14 | 12, 13 | eqtr4d 2768 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 15 | 14, 6 | sylibr 234 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| 16 | 11, 15 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 17 | 9, 16 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 Vcvv 3455 [wsbc 3761 ⦋csb 3870 ∅c0 4304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-nul 4305 |
| This theorem is referenced by: 2nreu 4415 disjdsct 32634 cdlemkid3N 40919 cdlemkid4 40920 |
| Copyright terms: Public domain | W3C validator |