| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcne12 | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcne12 | ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2935 | . . . . . 6 ⊢ (¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) | |
| 2 | 1 | sbcbii 3827 | . . . . 5 ⊢ ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) |
| 4 | sbcng 3818 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶)) | |
| 5 | sbceqg 4392 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 6 | nne 2935 | . . . . 5 ⊢ (¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 7 | 5, 6 | bitr4di 289 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 8 | 3, 4, 7 | 3bitr3d 309 | . . 3 ⊢ (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 9 | 8 | con4bid 317 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 10 | sbcex 3780 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 → 𝐴 ∈ V) | |
| 11 | 10 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶) |
| 12 | csbprc 4389 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
| 13 | csbprc 4389 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
| 14 | 12, 13 | eqtr4d 2772 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 15 | 14, 6 | sylibr 234 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| 16 | 11, 15 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
| 17 | 9, 16 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 [wsbc 3770 ⦋csb 3879 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: 2nreu 4424 disjdsct 32639 cdlemkid3N 40869 cdlemkid4 40870 |
| Copyright terms: Public domain | W3C validator |