MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcne12 Structured version   Visualization version   GIF version

Theorem sbcne12 4386
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcne12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcne12
StepHypRef Expression
1 nne 2931 . . . . . 6 𝐵𝐶𝐵 = 𝐶)
21sbcbii 3818 . . . . 5 ([𝐴 / 𝑥] ¬ 𝐵𝐶[𝐴 / 𝑥]𝐵 = 𝐶)
32a1i 11 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
4 sbcng 3809 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
5 sbceqg 4383 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
6 nne 2931 . . . . 5 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
75, 6bitr4di 289 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
83, 4, 73bitr3d 309 . . 3 (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
98con4bid 317 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
10 sbcex 3771 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
1110con3i 154 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
12 csbprc 4380 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
13 csbprc 4380 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1412, 13eqtr4d 2768 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
1514, 6sylibr 234 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
1611, 152falsed 376 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
179, 16pm2.61i 182 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2927  Vcvv 3455  [wsbc 3761  csb 3870  c0 4304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-nul 4305
This theorem is referenced by:  2nreu  4415  disjdsct  32634  cdlemkid3N  40919  cdlemkid4  40920
  Copyright terms: Public domain W3C validator