Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcne12 | Structured version Visualization version GIF version |
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcne12 | ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2946 | . . . . . 6 ⊢ (¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) | |
2 | 1 | sbcbii 3772 | . . . . 5 ⊢ ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) |
4 | sbcng 3761 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶)) | |
5 | sbceqg 4340 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
6 | nne 2946 | . . . . 5 ⊢ (¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | |
7 | 5, 6 | bitr4di 288 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
8 | 3, 4, 7 | 3bitr3d 308 | . . 3 ⊢ (𝐴 ∈ V → (¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
9 | 8 | con4bid 316 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
10 | sbcex 3721 | . . . 4 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 → 𝐴 ∈ V) | |
11 | 10 | con3i 154 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵 ≠ 𝐶) |
12 | csbprc 4337 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
13 | csbprc 4337 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
14 | 12, 13 | eqtr4d 2781 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
15 | 14, 6 | sylibr 233 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
16 | 11, 15 | 2falsed 376 | . 2 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 [wsbc 3711 ⦋csb 3828 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-nul 4254 |
This theorem is referenced by: 2nreu 4372 disjdsct 30937 cdlemkid3N 38874 cdlemkid4 38875 |
Copyright terms: Public domain | W3C validator |