MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcreu Structured version   Visualization version   GIF version

Theorem sbcreu 3809
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcreu ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem sbcreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3726 . 2 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑𝐴 ∈ V)
2 reurex 3362 . . 3 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑 → ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
3 sbcex 3726 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
43rexlimivw 3211 . . 3 (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
52, 4syl 17 . 2 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
6 dfsbcq2 3719 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑[𝐴 / 𝑥]∃!𝑦𝐵 𝜑))
7 dfsbcq2 3719 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
87reubidv 3323 . . 3 (𝑧 = 𝐴 → (∃!𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
9 nfcv 2907 . . . . 5 𝑥𝐵
10 nfs1v 2153 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
119, 10nfreuw 3305 . . . 4 𝑥∃!𝑦𝐵 [𝑧 / 𝑥]𝜑
12 sbequ12 2244 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1312reubidv 3323 . . . 4 (𝑥 = 𝑧 → (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑))
1411, 13sbiev 2309 . . 3 ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑)
156, 8, 14vtoclbg 3507 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
161, 5, 15pm5.21nii 380 1 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  [wsb 2067  wcel 2106  wrex 3065  ∃!wreu 3066  Vcvv 3432  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-v 3434  df-sbc 3717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator