Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcreu | Structured version Visualization version GIF version |
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcreu | ⊢ ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3707 | . 2 ⊢ ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V) | |
2 | reurex 3342 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | |
3 | sbcex 3707 | . . . 4 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
4 | 3 | rexlimivw 3207 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
6 | dfsbcq2 3700 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑)) | |
7 | dfsbcq2 3700 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
8 | 7 | reubidv 3308 | . . 3 ⊢ (𝑧 = 𝐴 → (∃!𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
9 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
10 | nfs1v 2158 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
11 | 9, 10 | nfreuw 3293 | . . . 4 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
12 | sbequ12 2251 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
13 | 12 | reubidv 3308 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
14 | 11, 13 | sbiev 2323 | . . 3 ⊢ ([𝑧 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
15 | 6, 8, 14 | vtoclbg 3488 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
16 | 1, 5, 15 | pm5.21nii 384 | 1 ⊢ ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1539 [wsb 2070 ∈ wcel 2112 ∃wrex 3072 ∃!wreu 3073 Vcvv 3410 [wsbc 3697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-v 3412 df-sbc 3698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |