MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sfi Structured version   Visualization version   GIF version

Theorem ac6sfi 9231
Description: A version of ac6s 10420 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
ac6sfi.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6sfi
Dummy variables 𝑢 𝑤 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3309 . . . 4 (𝑢 = ∅ → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑))
2 feq2 6650 . . . . . 6 (𝑢 = ∅ → (𝑓:𝑢𝐵𝑓:∅⟶𝐵))
3 raleq 3309 . . . . . 6 (𝑢 = ∅ → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ ∅ 𝜓))
42, 3anbi12d 631 . . . . 5 (𝑢 = ∅ → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
54exbidv 1924 . . . 4 (𝑢 = ∅ → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
61, 5imbi12d 344 . . 3 (𝑢 = ∅ → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))))
7 raleq 3309 . . . 4 (𝑢 = 𝑤 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝑤𝑦𝐵 𝜑))
8 feq2 6650 . . . . . 6 (𝑢 = 𝑤 → (𝑓:𝑢𝐵𝑓:𝑤𝐵))
9 raleq 3309 . . . . . 6 (𝑢 = 𝑤 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝑤 𝜓))
108, 9anbi12d 631 . . . . 5 (𝑢 = 𝑤 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
1110exbidv 1924 . . . 4 (𝑢 = 𝑤 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
127, 11imbi12d 344 . . 3 (𝑢 = 𝑤 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓))))
13 raleq 3309 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑))
14 feq2 6650 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (𝑓:𝑢𝐵𝑓:(𝑤 ∪ {𝑧})⟶𝐵))
15 raleq 3309 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓))
1614, 15anbi12d 631 . . . . . 6 (𝑢 = (𝑤 ∪ {𝑧}) → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
1716exbidv 1924 . . . . 5 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
18 feq1 6649 . . . . . . 7 (𝑓 = 𝑔 → (𝑓:(𝑤 ∪ {𝑧})⟶𝐵𝑔:(𝑤 ∪ {𝑧})⟶𝐵))
19 fvex 6855 . . . . . . . . . 10 (𝑓𝑥) ∈ V
20 ac6sfi.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
2119, 20sbcie 3782 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
22 fveq1 6841 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
2322sbceq1d 3744 . . . . . . . . 9 (𝑓 = 𝑔 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔𝑥) / 𝑦]𝜑))
2421, 23bitr3id 284 . . . . . . . 8 (𝑓 = 𝑔 → (𝜓[(𝑔𝑥) / 𝑦]𝜑))
2524ralbidv 3174 . . . . . . 7 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2618, 25anbi12d 631 . . . . . 6 (𝑓 = 𝑔 → ((𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2726cbvexvw 2040 . . . . 5 (∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2817, 27bitrdi 286 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2913, 28imbi12d 344 . . 3 (𝑢 = (𝑤 ∪ {𝑧}) → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
30 raleq 3309 . . . 4 (𝑢 = 𝐴 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
31 feq2 6650 . . . . . 6 (𝑢 = 𝐴 → (𝑓:𝑢𝐵𝑓:𝐴𝐵))
32 raleq 3309 . . . . . 6 (𝑢 = 𝐴 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝐴 𝜓))
3331, 32anbi12d 631 . . . . 5 (𝑢 = 𝐴 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3433exbidv 1924 . . . 4 (𝑢 = 𝐴 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3530, 34imbi12d 344 . . 3 (𝑢 = 𝐴 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
36 f0 6723 . . . 4 ∅:∅⟶𝐵
37 0ex 5264 . . . . 5 ∅ ∈ V
38 ral0 4470 . . . . . . 7 𝑥 ∈ ∅ 𝜓
3938biantru 530 . . . . . 6 (𝑓:∅⟶𝐵 ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
40 feq1 6649 . . . . . 6 (𝑓 = ∅ → (𝑓:∅⟶𝐵 ↔ ∅:∅⟶𝐵))
4139, 40bitr3id 284 . . . . 5 (𝑓 = ∅ → ((𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓) ↔ ∅:∅⟶𝐵))
4237, 41spcev 3565 . . . 4 (∅:∅⟶𝐵 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
4336, 42mp1i 13 . . 3 (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
44 ssun1 4132 . . . . . . 7 𝑤 ⊆ (𝑤 ∪ {𝑧})
45 ssralv 4010 . . . . . . 7 (𝑤 ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑))
4644, 45ax-mp 5 . . . . . 6 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑)
4746imim1i 63 . . . . 5 ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
48 ssun2 4133 . . . . . . . . 9 {𝑧} ⊆ (𝑤 ∪ {𝑧})
49 ssralv 4010 . . . . . . . . 9 ({𝑧} ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑))
5048, 49ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑)
51 ralsnsg 4629 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑))
5251elv 3451 . . . . . . . . 9 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
53 sbcrex 3831 . . . . . . . . 9 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5452, 53bitri 274 . . . . . . . 8 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5550, 54sylib 217 . . . . . . 7 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
56 nfv 1917 . . . . . . . 8 𝑦 ¬ 𝑧𝑤
57 nfv 1917 . . . . . . . . 9 𝑦𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)
58 nfv 1917 . . . . . . . . . . 11 𝑦 𝑔:(𝑤 ∪ {𝑧})⟶𝐵
59 nfcv 2907 . . . . . . . . . . . 12 𝑦(𝑤 ∪ {𝑧})
60 nfsbc1v 3759 . . . . . . . . . . . 12 𝑦[(𝑔𝑥) / 𝑦]𝜑
6159, 60nfralw 3294 . . . . . . . . . . 11 𝑦𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑
6258, 61nfan 1902 . . . . . . . . . 10 𝑦(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6362nfex 2317 . . . . . . . . 9 𝑦𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6457, 63nfim 1899 . . . . . . . 8 𝑦(∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
65 simprl 769 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑓:𝑤𝐵)
66 vex 3449 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
67 vex 3449 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
6866, 67f1osn 6824 . . . . . . . . . . . . . . 15 {⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦}
69 f1of 6784 . . . . . . . . . . . . . . 15 ({⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦} → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
7068, 69mp1i 13 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
71 simpl2 1192 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦𝐵)
7271snssd 4769 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {𝑦} ⊆ 𝐵)
7370, 72fssd 6686 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶𝐵)
74 simpl1 1191 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ¬ 𝑧𝑤)
75 disjsn 4672 . . . . . . . . . . . . . 14 ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑤)
7674, 75sylibr 233 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑤 ∩ {𝑧}) = ∅)
7765, 73, 76fun2d 6706 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵)
78 simprr 771 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 𝜓)
79 eleq1a 2833 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑤 → (𝑧 = 𝑥𝑧𝑤))
8079necon3bd 2957 . . . . . . . . . . . . . . . . . 18 (𝑥𝑤 → (¬ 𝑧𝑤𝑧𝑥))
8180impcom 408 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑤𝑥𝑤) → 𝑧𝑥)
82 fvunsn 7125 . . . . . . . . . . . . . . . . 17 (𝑧𝑥 → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥))
83 dfsbcq 3741 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → ([((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
8483, 21bitr2di 287 . . . . . . . . . . . . . . . . 17 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8581, 82, 843syl 18 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑤𝑥𝑤) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8685ralbidva 3172 . . . . . . . . . . . . . . 15 𝑧𝑤 → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8774, 86syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8878, 87mpbid 231 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
89 simpl3 1193 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → [𝑧 / 𝑥]𝜑)
90 ffun 6671 . . . . . . . . . . . . . . . . 17 ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 → Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}))
91 ssun2 4133 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩})
92 vsnid 4623 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
9367dmsnop 6168 . . . . . . . . . . . . . . . . . . 19 dom {⟨𝑧, 𝑦⟩} = {𝑧}
9492, 93eleqtrri 2837 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}
95 funssfv 6863 . . . . . . . . . . . . . . . . . 18 ((Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9691, 94, 95mp3an23 1453 . . . . . . . . . . . . . . . . 17 (Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9777, 90, 963syl 18 . . . . . . . . . . . . . . . 16 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9866, 67fvsn 7127 . . . . . . . . . . . . . . . 16 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
9997, 98eqtr2di 2793 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
100 ralsnsg 4629 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑))
101100elv 3451 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
102 elsni 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
103102fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑧} → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
104103eqeq2d 2747 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧} → (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) ↔ 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧)))
105104biimparc 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
106 sbceq1a 3750 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
107105, 106syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
108107ralbidva 3172 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → (∀𝑥 ∈ {𝑧}𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
109101, 108bitr3id 284 . . . . . . . . . . . . . . 15 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
11099, 109syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
11189, 110mpbid 231 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
112 ralun 4152 . . . . . . . . . . . . 13 ((∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑 ∧ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
11388, 111, 112syl2anc 584 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
114 vex 3449 . . . . . . . . . . . . . 14 𝑓 ∈ V
115 snex 5388 . . . . . . . . . . . . . 14 {⟨𝑧, 𝑦⟩} ∈ V
116114, 115unex 7680 . . . . . . . . . . . . 13 (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∈ V
117 feq1 6649 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ↔ (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵))
118 fveq1 6841 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
119118sbceq1d 3744 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ([(𝑔𝑥) / 𝑦]𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
120119ralbidv 3174 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
121117, 120anbi12d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑) ↔ ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)))
122116, 121spcev 3565 . . . . . . . . . . . 12 (((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
12377, 113, 122syl2anc 584 . . . . . . . . . . 11 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
124123ex 413 . . . . . . . . . 10 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → ((𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
125124exlimdv 1936 . . . . . . . . 9 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
1261253exp 1119 . . . . . . . 8 𝑧𝑤 → (𝑦𝐵 → ([𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))))
12756, 64, 126rexlimd 3249 . . . . . . 7 𝑧𝑤 → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
12855, 127syl5 34 . . . . . 6 𝑧𝑤 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
129128a2d 29 . . . . 5 𝑧𝑤 → ((∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
13047, 129syl5 34 . . . 4 𝑧𝑤 → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
131130adantl 482 . . 3 ((𝑤 ∈ Fin ∧ ¬ 𝑧𝑤) → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
1326, 12, 29, 35, 43, 131findcard2s 9109 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
133132imp 407 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  [wsbc 3739  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  cop 4592  dom cdm 5633  Fun wfun 6490  wf 6492  1-1-ontowf1o 6495  cfv 6496  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-en 8884  df-fin 8887
This theorem is referenced by:  fissuni  9301  fipreima  9302  indexfi  9304  finacn  9986  axcc4dom  10377  ttukeylem6  10450  firest  17314  ablfaclem3  19866  ablfac2  19868  cmpcovf  22742  cmpsub  22751  tgcmp  22752  hauscmplem  22757  comppfsc  22883  ptcnplem  22972  alexsubALTlem3  23400  alexsubALT  23402  tsmsxplem1  23504  ovolicc2lem5  24885  ovolicc2  24886  limciun  25258  cvmliftlem15  33892  matunitlindflem2  36075  ptrecube  36078  istotbnd3  36230  sstotbnd2  36233  sstotbnd  36234  prdsbnd  36252  prdstotbnd  36253  heiborlem1  36270  heibor  36280  kelac1  41376  hbt  41443
  Copyright terms: Public domain W3C validator