MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sfi Structured version   Visualization version   GIF version

Theorem ac6sfi 9317
Description: A version of ac6s 10521 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
ac6sfi.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6sfi
Dummy variables 𝑢 𝑤 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3320 . . . 4 (𝑢 = ∅ → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑))
2 feq2 6717 . . . . . 6 (𝑢 = ∅ → (𝑓:𝑢𝐵𝑓:∅⟶𝐵))
3 raleq 3320 . . . . . 6 (𝑢 = ∅ → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ ∅ 𝜓))
42, 3anbi12d 632 . . . . 5 (𝑢 = ∅ → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
54exbidv 1918 . . . 4 (𝑢 = ∅ → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
61, 5imbi12d 344 . . 3 (𝑢 = ∅ → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))))
7 raleq 3320 . . . 4 (𝑢 = 𝑤 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝑤𝑦𝐵 𝜑))
8 feq2 6717 . . . . . 6 (𝑢 = 𝑤 → (𝑓:𝑢𝐵𝑓:𝑤𝐵))
9 raleq 3320 . . . . . 6 (𝑢 = 𝑤 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝑤 𝜓))
108, 9anbi12d 632 . . . . 5 (𝑢 = 𝑤 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
1110exbidv 1918 . . . 4 (𝑢 = 𝑤 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
127, 11imbi12d 344 . . 3 (𝑢 = 𝑤 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓))))
13 raleq 3320 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑))
14 feq2 6717 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (𝑓:𝑢𝐵𝑓:(𝑤 ∪ {𝑧})⟶𝐵))
15 raleq 3320 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓))
1614, 15anbi12d 632 . . . . . 6 (𝑢 = (𝑤 ∪ {𝑧}) → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
1716exbidv 1918 . . . . 5 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
18 feq1 6716 . . . . . . 7 (𝑓 = 𝑔 → (𝑓:(𝑤 ∪ {𝑧})⟶𝐵𝑔:(𝑤 ∪ {𝑧})⟶𝐵))
19 fvex 6919 . . . . . . . . . 10 (𝑓𝑥) ∈ V
20 ac6sfi.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
2119, 20sbcie 3834 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
22 fveq1 6905 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
2322sbceq1d 3795 . . . . . . . . 9 (𝑓 = 𝑔 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔𝑥) / 𝑦]𝜑))
2421, 23bitr3id 285 . . . . . . . 8 (𝑓 = 𝑔 → (𝜓[(𝑔𝑥) / 𝑦]𝜑))
2524ralbidv 3175 . . . . . . 7 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2618, 25anbi12d 632 . . . . . 6 (𝑓 = 𝑔 → ((𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2726cbvexvw 2033 . . . . 5 (∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2817, 27bitrdi 287 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2913, 28imbi12d 344 . . 3 (𝑢 = (𝑤 ∪ {𝑧}) → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
30 raleq 3320 . . . 4 (𝑢 = 𝐴 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
31 feq2 6717 . . . . . 6 (𝑢 = 𝐴 → (𝑓:𝑢𝐵𝑓:𝐴𝐵))
32 raleq 3320 . . . . . 6 (𝑢 = 𝐴 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝐴 𝜓))
3331, 32anbi12d 632 . . . . 5 (𝑢 = 𝐴 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3433exbidv 1918 . . . 4 (𝑢 = 𝐴 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3530, 34imbi12d 344 . . 3 (𝑢 = 𝐴 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
36 f0 6789 . . . 4 ∅:∅⟶𝐵
37 0ex 5312 . . . . 5 ∅ ∈ V
38 ral0 4518 . . . . . . 7 𝑥 ∈ ∅ 𝜓
3938biantru 529 . . . . . 6 (𝑓:∅⟶𝐵 ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
40 feq1 6716 . . . . . 6 (𝑓 = ∅ → (𝑓:∅⟶𝐵 ↔ ∅:∅⟶𝐵))
4139, 40bitr3id 285 . . . . 5 (𝑓 = ∅ → ((𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓) ↔ ∅:∅⟶𝐵))
4237, 41spcev 3605 . . . 4 (∅:∅⟶𝐵 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
4336, 42mp1i 13 . . 3 (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
44 ssun1 4187 . . . . . . 7 𝑤 ⊆ (𝑤 ∪ {𝑧})
45 ssralv 4063 . . . . . . 7 (𝑤 ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑))
4644, 45ax-mp 5 . . . . . 6 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑)
4746imim1i 63 . . . . 5 ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
48 ssun2 4188 . . . . . . . . 9 {𝑧} ⊆ (𝑤 ∪ {𝑧})
49 ssralv 4063 . . . . . . . . 9 ({𝑧} ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑))
5048, 49ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑)
51 ralsnsg 4674 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑))
5251elv 3482 . . . . . . . . 9 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
53 sbcrex 3883 . . . . . . . . 9 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5452, 53bitri 275 . . . . . . . 8 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5550, 54sylib 218 . . . . . . 7 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
56 nfv 1911 . . . . . . . 8 𝑦 ¬ 𝑧𝑤
57 nfv 1911 . . . . . . . . 9 𝑦𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)
58 nfv 1911 . . . . . . . . . . 11 𝑦 𝑔:(𝑤 ∪ {𝑧})⟶𝐵
59 nfcv 2902 . . . . . . . . . . . 12 𝑦(𝑤 ∪ {𝑧})
60 nfsbc1v 3810 . . . . . . . . . . . 12 𝑦[(𝑔𝑥) / 𝑦]𝜑
6159, 60nfralw 3308 . . . . . . . . . . 11 𝑦𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑
6258, 61nfan 1896 . . . . . . . . . 10 𝑦(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6362nfex 2322 . . . . . . . . 9 𝑦𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6457, 63nfim 1893 . . . . . . . 8 𝑦(∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
65 simprl 771 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑓:𝑤𝐵)
66 vex 3481 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
67 vex 3481 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
6866, 67f1osn 6888 . . . . . . . . . . . . . . 15 {⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦}
69 f1of 6848 . . . . . . . . . . . . . . 15 ({⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦} → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
7068, 69mp1i 13 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
71 simpl2 1191 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦𝐵)
7271snssd 4813 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {𝑦} ⊆ 𝐵)
7370, 72fssd 6753 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶𝐵)
74 simpl1 1190 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ¬ 𝑧𝑤)
75 disjsn 4715 . . . . . . . . . . . . . 14 ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑤)
7674, 75sylibr 234 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑤 ∩ {𝑧}) = ∅)
7765, 73, 76fun2d 6772 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵)
78 simprr 773 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 𝜓)
79 eleq1a 2833 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑤 → (𝑧 = 𝑥𝑧𝑤))
8079necon3bd 2951 . . . . . . . . . . . . . . . . . 18 (𝑥𝑤 → (¬ 𝑧𝑤𝑧𝑥))
8180impcom 407 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑤𝑥𝑤) → 𝑧𝑥)
82 fvunsn 7198 . . . . . . . . . . . . . . . . 17 (𝑧𝑥 → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥))
83 dfsbcq 3792 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → ([((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
8483, 21bitr2di 288 . . . . . . . . . . . . . . . . 17 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8581, 82, 843syl 18 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑤𝑥𝑤) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8685ralbidva 3173 . . . . . . . . . . . . . . 15 𝑧𝑤 → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8774, 86syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8878, 87mpbid 232 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
89 simpl3 1192 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → [𝑧 / 𝑥]𝜑)
90 ffun 6739 . . . . . . . . . . . . . . . . 17 ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 → Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}))
91 ssun2 4188 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩})
92 vsnid 4667 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
9367dmsnop 6237 . . . . . . . . . . . . . . . . . . 19 dom {⟨𝑧, 𝑦⟩} = {𝑧}
9492, 93eleqtrri 2837 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}
95 funssfv 6927 . . . . . . . . . . . . . . . . . 18 ((Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9691, 94, 95mp3an23 1452 . . . . . . . . . . . . . . . . 17 (Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9777, 90, 963syl 18 . . . . . . . . . . . . . . . 16 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9866, 67fvsn 7200 . . . . . . . . . . . . . . . 16 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
9997, 98eqtr2di 2791 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
100 ralsnsg 4674 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑))
101100elv 3482 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
102 elsni 4647 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
103102fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑧} → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
104103eqeq2d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧} → (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) ↔ 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧)))
105104biimparc 479 . . . . . . . . . . . . . . . . . 18 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
106 sbceq1a 3801 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
107105, 106syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
108107ralbidva 3173 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → (∀𝑥 ∈ {𝑧}𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
109101, 108bitr3id 285 . . . . . . . . . . . . . . 15 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
11099, 109syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
11189, 110mpbid 232 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
112 ralun 4207 . . . . . . . . . . . . 13 ((∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑 ∧ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
11388, 111, 112syl2anc 584 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
114 vex 3481 . . . . . . . . . . . . . 14 𝑓 ∈ V
115 snex 5441 . . . . . . . . . . . . . 14 {⟨𝑧, 𝑦⟩} ∈ V
116114, 115unex 7762 . . . . . . . . . . . . 13 (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∈ V
117 feq1 6716 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ↔ (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵))
118 fveq1 6905 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
119118sbceq1d 3795 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ([(𝑔𝑥) / 𝑦]𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
120119ralbidv 3175 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
121117, 120anbi12d 632 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑) ↔ ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)))
122116, 121spcev 3605 . . . . . . . . . . . 12 (((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
12377, 113, 122syl2anc 584 . . . . . . . . . . 11 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
124123ex 412 . . . . . . . . . 10 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → ((𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
125124exlimdv 1930 . . . . . . . . 9 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
1261253exp 1118 . . . . . . . 8 𝑧𝑤 → (𝑦𝐵 → ([𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))))
12756, 64, 126rexlimd 3263 . . . . . . 7 𝑧𝑤 → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
12855, 127syl5 34 . . . . . 6 𝑧𝑤 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
129128a2d 29 . . . . 5 𝑧𝑤 → ((∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
13047, 129syl5 34 . . . 4 𝑧𝑤 → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
131130adantl 481 . . 3 ((𝑤 ∈ Fin ∧ ¬ 𝑧𝑤) → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
1326, 12, 29, 35, 43, 131findcard2s 9203 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
133132imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  [wsbc 3790  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630  cop 4636  dom cdm 5688  Fun wfun 6556  wf 6558  1-1-ontowf1o 6561  cfv 6562  Fincfn 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-en 8984  df-fin 8987
This theorem is referenced by:  fissuni  9394  fipreima  9395  indexfi  9397  finacn  10087  axcc4dom  10478  ttukeylem6  10551  firest  17478  ablfaclem3  20121  ablfac2  20123  cmpcovf  23414  cmpsub  23423  tgcmp  23424  hauscmplem  23429  comppfsc  23555  ptcnplem  23644  alexsubALTlem3  24072  alexsubALT  24074  tsmsxplem1  24176  ovolicc2lem5  25569  ovolicc2  25570  limciun  25943  cvmliftlem15  35282  matunitlindflem2  37603  ptrecube  37606  istotbnd3  37757  sstotbnd2  37760  sstotbnd  37761  prdsbnd  37779  prdstotbnd  37780  heiborlem1  37797  heibor  37807  kelac1  43051  hbt  43118
  Copyright terms: Public domain W3C validator