Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbwrdg | Structured version Visualization version GIF version |
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
csbwrdg | ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14146 | . . 3 ⊢ Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
2 | 1 | csbeq2i 3836 | . 2 ⊢ ⦋𝑆 / 𝑥⦌Word 𝑥 = ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} |
3 | sbcrex 3804 | . . . . 5 ⊢ ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥) | |
4 | sbcfg 6582 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥)) | |
5 | csbconstg 3847 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑤 = 𝑤) | |
6 | csbconstg 3847 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌(0..^𝑙) = (0..^𝑙)) | |
7 | csbvarg 4362 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑥 = 𝑆) | |
8 | 5, 6, 7 | feq123d 6573 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
9 | 4, 8 | bitrd 278 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
10 | 9 | rexbidv 3225 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
11 | 3, 10 | syl5bb 282 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
12 | 11 | abbidv 2808 | . . 3 ⊢ (𝑆 ∈ 𝑉 → {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
13 | csbab 4368 | . . 3 ⊢ ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
14 | df-word 14146 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
15 | 12, 13, 14 | 3eqtr4g 2804 | . 2 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆) |
16 | 2, 15 | eqtrid 2790 | 1 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 [wsbc 3711 ⦋csb 3828 ⟶wf 6414 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 Word cword 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-word 14146 |
This theorem is referenced by: elovmpowrd 14189 |
Copyright terms: Public domain | W3C validator |