Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbwrdg | Structured version Visualization version GIF version |
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
csbwrdg | ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14229 | . . 3 ⊢ Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
2 | 1 | csbeq2i 3845 | . 2 ⊢ ⦋𝑆 / 𝑥⦌Word 𝑥 = ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} |
3 | sbcrex 3813 | . . . . 5 ⊢ ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥) | |
4 | sbcfg 6596 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥)) | |
5 | csbconstg 3856 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑤 = 𝑤) | |
6 | csbconstg 3856 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌(0..^𝑙) = (0..^𝑙)) | |
7 | csbvarg 4371 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑥 = 𝑆) | |
8 | 5, 6, 7 | feq123d 6587 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
9 | 4, 8 | bitrd 278 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
10 | 9 | rexbidv 3228 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
11 | 3, 10 | bitrid 282 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
12 | 11 | abbidv 2809 | . . 3 ⊢ (𝑆 ∈ 𝑉 → {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
13 | csbab 4377 | . . 3 ⊢ ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
14 | df-word 14229 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
15 | 12, 13, 14 | 3eqtr4g 2805 | . 2 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆) |
16 | 2, 15 | eqtrid 2792 | 1 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {cab 2717 ∃wrex 3067 [wsbc 3720 ⦋csb 3837 ⟶wf 6428 (class class class)co 7272 0cc0 10882 ℕ0cn0 12244 ..^cfzo 13393 Word cword 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-word 14229 |
This theorem is referenced by: elovmpowrd 14272 |
Copyright terms: Public domain | W3C validator |