MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrdg Structured version   Visualization version   GIF version

Theorem csbwrdg 14552
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉

Proof of Theorem csbwrdg
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14523 . . 3 Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
21csbeq2i 3900 . 2 𝑆 / 𝑥Word 𝑥 = 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
3 sbcrex 3868 . . . . 5 ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥)
4 sbcfg 6726 . . . . . . 7 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥))
5 csbconstg 3911 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑤 = 𝑤)
6 csbconstg 3911 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥(0..^𝑙) = (0..^𝑙))
7 csbvarg 4436 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑥 = 𝑆)
85, 6, 7feq123d 6717 . . . . . . 7 (𝑆𝑉 → (𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥𝑤:(0..^𝑙)⟶𝑆))
94, 8bitrd 278 . . . . . 6 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑤:(0..^𝑙)⟶𝑆))
109rexbidv 3169 . . . . 5 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
113, 10bitrid 282 . . . 4 (𝑆𝑉 → ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
1211abbidv 2795 . . 3 (𝑆𝑉 → {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
13 csbab 4442 . . 3 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
14 df-word 14523 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
1512, 13, 143eqtr4g 2791 . 2 (𝑆𝑉𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆)
162, 15eqtrid 2778 1 (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  [wsbc 3776  csb 3892  wf 6550  (class class class)co 7424  0cc0 11158  0cn0 12524  ..^cfzo 13681  Word cword 14522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6556  df-fn 6557  df-f 6558  df-word 14523
This theorem is referenced by:  elovmpowrd  14566
  Copyright terms: Public domain W3C validator