MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrdg Structured version   Visualization version   GIF version

Theorem csbwrdg 14247
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉

Proof of Theorem csbwrdg
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14218 . . 3 Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
21csbeq2i 3840 . 2 𝑆 / 𝑥Word 𝑥 = 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
3 sbcrex 3808 . . . . 5 ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥)
4 sbcfg 6598 . . . . . . 7 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥))
5 csbconstg 3851 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑤 = 𝑤)
6 csbconstg 3851 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥(0..^𝑙) = (0..^𝑙))
7 csbvarg 4365 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑥 = 𝑆)
85, 6, 7feq123d 6589 . . . . . . 7 (𝑆𝑉 → (𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥𝑤:(0..^𝑙)⟶𝑆))
94, 8bitrd 278 . . . . . 6 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑤:(0..^𝑙)⟶𝑆))
109rexbidv 3226 . . . . 5 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
113, 10bitrid 282 . . . 4 (𝑆𝑉 → ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
1211abbidv 2807 . . 3 (𝑆𝑉 → {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
13 csbab 4371 . . 3 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
14 df-word 14218 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
1512, 13, 143eqtr4g 2803 . 2 (𝑆𝑉𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆)
162, 15eqtrid 2790 1 (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  [wsbc 3716  csb 3832  wf 6429  (class class class)co 7275  0cc0 10871  0cn0 12233  ..^cfzo 13382  Word cword 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-word 14218
This theorem is referenced by:  elovmpowrd  14261
  Copyright terms: Public domain W3C validator