MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrdg Structured version   Visualization version   GIF version

Theorem csbwrdg 14567
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉

Proof of Theorem csbwrdg
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 14537 . . 3 Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
21csbeq2i 3887 . 2 𝑆 / 𝑥Word 𝑥 = 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
3 sbcrex 3855 . . . . 5 ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥)
4 sbcfg 6709 . . . . . . 7 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥))
5 csbconstg 3898 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑤 = 𝑤)
6 csbconstg 3898 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥(0..^𝑙) = (0..^𝑙))
7 csbvarg 4414 . . . . . . . 8 (𝑆𝑉𝑆 / 𝑥𝑥 = 𝑆)
85, 6, 7feq123d 6700 . . . . . . 7 (𝑆𝑉 → (𝑆 / 𝑥𝑤:𝑆 / 𝑥(0..^𝑙)⟶𝑆 / 𝑥𝑥𝑤:(0..^𝑙)⟶𝑆))
94, 8bitrd 279 . . . . . 6 (𝑆𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥𝑤:(0..^𝑙)⟶𝑆))
109rexbidv 3165 . . . . 5 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
113, 10bitrid 283 . . . 4 (𝑆𝑉 → ([𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
1211abbidv 2802 . . 3 (𝑆𝑉 → {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
13 csbab 4420 . . 3 𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤[𝑆 / 𝑥]𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}
14 df-word 14537 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
1512, 13, 143eqtr4g 2796 . 2 (𝑆𝑉𝑆 / 𝑥{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆)
162, 15eqtrid 2783 1 (𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  [wsbc 3770  csb 3879  wf 6532  (class class class)co 7410  0cc0 11134  0cn0 12506  ..^cfzo 13676  Word cword 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-word 14537
This theorem is referenced by:  elovmpowrd  14581
  Copyright terms: Public domain W3C validator