Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem1 Structured version   Visualization version   GIF version

Theorem setrec1lem1 46279
Description: Lemma for setrec1 46283. This is a utility theorem showing the equivalence of the statement 𝑋𝑌 and its expanded form. The proof uses elabg 3600 and equivalence theorems.

Variable 𝑌 is the class of sets 𝑦 that are recursively generated by the function 𝐹. In other words, 𝑦𝑌 iff by starting with the empty set and repeatedly applying 𝐹 to subsets 𝑤 of our set, we will eventually generate all the elements of 𝑌. In this theorem, 𝑋 is any element of 𝑌, and 𝑉 is any class. (Contributed by Emmett Weisz, 16-Oct-2020.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec1lem1.1 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem1.2 (𝜑𝑋𝑉)
Assertion
Ref Expression
setrec1lem1 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
Distinct variable groups:   𝑦,𝐹   𝑤,𝑋,𝑦   𝑧,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤)   𝑉(𝑦,𝑧,𝑤)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem1
StepHypRef Expression
1 setrec1lem1.2 . 2 (𝜑𝑋𝑉)
2 sseq2 3943 . . . . . . 7 (𝑦 = 𝑋 → (𝑤𝑦𝑤𝑋))
32imbi1d 341 . . . . . 6 (𝑦 = 𝑋 → ((𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))))
43albidv 1924 . . . . 5 (𝑦 = 𝑋 → (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))))
5 sseq1 3942 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑧𝑋𝑧))
64, 5imbi12d 344 . . . 4 (𝑦 = 𝑋 → ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
76albidv 1924 . . 3 (𝑦 = 𝑋 → (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
8 setrec1lem1.1 . . 3 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
97, 8elab2g 3604 . 2 (𝑋𝑉 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
101, 9syl 17 1 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wss 3883  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  setrec1lem2  46280  setrec1lem4  46282  setrec2fun  46284
  Copyright terms: Public domain W3C validator