Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1 Structured version   Visualization version   GIF version

Theorem setrec1 49265
Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is closed under 𝐹. This effectively sets the actual value of setrecs(𝐹) as a lower bound for setrecs(𝐹), as it implies that any set generated by successive applications of 𝐹 is a member of 𝐵. This theorem "gets off the ground" because we can start by letting 𝐴 = ∅, and the hypotheses of the theorem will hold trivially.

Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon).

Proof summary: Assume that 𝐴𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 49263, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 49263.) Therefore, by setrec1lem4 49264, (𝐹𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4931, it is a subset of the union of all sets recursively generated by 𝐹.

See df-setrecs 49258 for a detailed description of how the setrecs definition works.

(Contributed by Emmett Weisz, 9-Oct-2020.)

Hypotheses
Ref Expression
setrec1.b 𝐵 = setrecs(𝐹)
setrec1.v (𝜑𝐴 ∈ V)
setrec1.a (𝜑𝐴𝐵)
Assertion
Ref Expression
setrec1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem setrec1
Dummy variables 𝑎 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 setrec1.v . . . 4 (𝜑𝐴 ∈ V)
3 setrec1.a . . . . . . . . 9 (𝜑𝐴𝐵)
43sseld 3981 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎𝐵))
54imp 406 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐵)
6 setrec1.b . . . . . . . 8 𝐵 = setrecs(𝐹)
7 df-setrecs 49258 . . . . . . . 8 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
86, 7eqtri 2764 . . . . . . 7 𝐵 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
95, 8eleqtrdi 2850 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
10 eluni 4909 . . . . . 6 (𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ↔ ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
119, 10sylib 218 . . . . 5 ((𝜑𝑎𝐴) → ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
1211ralrimiva 3145 . . . 4 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
131, 2, 12setrec1lem3 49263 . . 3 (𝜑 → ∃𝑥(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
14 nfv 1913 . . . . . . 7 𝑧𝜑
15 nfv 1913 . . . . . . . 8 𝑧 𝐴𝑥
16 nfaba1 2912 . . . . . . . . 9 𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716nfel2 2923 . . . . . . . 8 𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1815, 17nfan 1898 . . . . . . 7 𝑧(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
1914, 18nfan 1898 . . . . . 6 𝑧(𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
202adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴 ∈ V)
21 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴𝑥)
22 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2319, 1, 20, 21, 22setrec1lem4 49264 . . . . 5 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
24 ssun2 4178 . . . . 5 (𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴))
2523, 24jctil 519 . . . 4 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → ((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
26 ssuni 4931 . . . 4 (((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2725, 26syl 17 . . 3 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2813, 27exlimddv 1934 . 2 (𝜑 → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2928, 8sseqtrrdi 4024 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  {cab 2713  Vcvv 3479  cun 3948  wss 3950   cuni 4906  cfv 6560  setrecscsetrecs 49257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805  df-rank 9806  df-setrecs 49258
This theorem is referenced by:  elsetrecslem  49273  elsetrecs  49274  setrecsss  49275  setrecsres  49276  vsetrec  49277  onsetrec  49282
  Copyright terms: Public domain W3C validator