![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1 | Structured version Visualization version GIF version |
Description: This is the first of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is closed under 𝐹. This
effectively sets the
actual value of setrecs(𝐹) as a lower bound for
setrecs(𝐹), as it implies that any set
generated by successive
applications of 𝐹 is a member of 𝐵. This
theorem "gets off the
ground" because we can start by letting 𝐴 = ∅, and the
hypotheses
of the theorem will hold trivially.
Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon). Proof summary: Assume that 𝐴 ⊆ 𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 48920, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 48920.) Therefore, by setrec1lem4 48921, (𝐹‘𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4937, it is a subset of the union of all sets recursively generated by 𝐹. See df-setrecs 48915 for a detailed description of how the setrecs definition works. (Contributed by Emmett Weisz, 9-Oct-2020.) |
Ref | Expression |
---|---|
setrec1.b | ⊢ 𝐵 = setrecs(𝐹) |
setrec1.v | ⊢ (𝜑 → 𝐴 ∈ V) |
setrec1.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
setrec1 | ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
2 | setrec1.v | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
3 | setrec1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | 3 | sseld 3994 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝐵)) |
5 | 4 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐵) |
6 | setrec1.b | . . . . . . . 8 ⊢ 𝐵 = setrecs(𝐹) | |
7 | df-setrecs 48915 | . . . . . . . 8 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
8 | 6, 7 | eqtri 2763 | . . . . . . 7 ⊢ 𝐵 = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
9 | 5, 8 | eleqtrdi 2849 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
10 | eluni 4915 | . . . . . 6 ⊢ (𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | |
11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
12 | 11 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
13 | 1, 2, 12 | setrec1lem3 48920 | . . 3 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
14 | nfv 1912 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
15 | nfv 1912 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝐴 ⊆ 𝑥 | |
16 | nfaba1 2911 | . . . . . . . . 9 ⊢ Ⅎ𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
17 | 16 | nfel2 2922 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
18 | 15, 17 | nfan 1897 | . . . . . . 7 ⊢ Ⅎ𝑧(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
19 | 14, 18 | nfan 1897 | . . . . . 6 ⊢ Ⅎ𝑧(𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ∈ V) |
21 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ⊆ 𝑥) | |
22 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
23 | 19, 1, 20, 21, 22 | setrec1lem4 48921 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
24 | ssun2 4189 | . . . . 5 ⊢ (𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) | |
25 | 23, 24 | jctil 519 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → ((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
26 | ssuni 4937 | . . . 4 ⊢ (((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
28 | 13, 27 | exlimddv 1933 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
29 | 28, 8 | sseqtrrdi 4047 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 Vcvv 3478 ∪ cun 3961 ⊆ wss 3963 ∪ cuni 4912 ‘cfv 6563 setrecscsetrecs 48914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 df-setrecs 48915 |
This theorem is referenced by: elsetrecslem 48930 elsetrecs 48931 setrecsss 48932 setrecsres 48933 vsetrec 48934 onsetrec 48939 |
Copyright terms: Public domain | W3C validator |