| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1 | Structured version Visualization version GIF version | ||
| Description: This is the first of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is closed under 𝐹. This
effectively sets the
actual value of setrecs(𝐹) as a lower bound for
setrecs(𝐹), as it implies that any set
generated by successive
applications of 𝐹 is a member of 𝐵. This
theorem "gets off the
ground" because we can start by letting 𝐴 = ∅, and the
hypotheses
of the theorem will hold trivially.
Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon). Proof summary: Assume that 𝐴 ⊆ 𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 49501, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 49501.) Therefore, by setrec1lem4 49502, (𝐹‘𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4908, it is a subset of the union of all sets recursively generated by 𝐹. See df-setrecs 49496 for a detailed description of how the setrecs definition works. (Contributed by Emmett Weisz, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| setrec1.b | ⊢ 𝐵 = setrecs(𝐹) |
| setrec1.v | ⊢ (𝜑 → 𝐴 ∈ V) |
| setrec1.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| setrec1 | ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 2 | setrec1.v | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 3 | setrec1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | 3 | sseld 3957 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝐵)) |
| 5 | 4 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐵) |
| 6 | setrec1.b | . . . . . . . 8 ⊢ 𝐵 = setrecs(𝐹) | |
| 7 | df-setrecs 49496 | . . . . . . . 8 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 8 | 6, 7 | eqtri 2758 | . . . . . . 7 ⊢ 𝐵 = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 9 | 5, 8 | eleqtrdi 2844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 10 | eluni 4886 | . . . . . 6 ⊢ (𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
| 12 | 11 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
| 13 | 1, 2, 12 | setrec1lem3 49501 | . . 3 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
| 14 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
| 15 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝐴 ⊆ 𝑥 | |
| 16 | nfaba1 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 17 | 16 | nfel2 2917 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 18 | 15, 17 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑧(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 19 | 14, 18 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑧(𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
| 20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ∈ V) |
| 21 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ⊆ 𝑥) | |
| 22 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
| 23 | 19, 1, 20, 21, 22 | setrec1lem4 49502 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 24 | ssun2 4154 | . . . . 5 ⊢ (𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) | |
| 25 | 23, 24 | jctil 519 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → ((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
| 26 | ssuni 4908 | . . . 4 ⊢ (((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 28 | 13, 27 | exlimddv 1935 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 29 | 28, 8 | sseqtrrdi 4000 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6530 setrecscsetrecs 49495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-reg 9604 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-r1 9776 df-rank 9777 df-setrecs 49496 |
| This theorem is referenced by: elsetrecslem 49511 elsetrecs 49512 setrecsss 49513 setrecsres 49514 vsetrec 49515 onsetrec 49520 |
| Copyright terms: Public domain | W3C validator |