Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1 Structured version   Visualization version   GIF version

Theorem setrec1 45221
Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is closed under 𝐹. This effectively sets the actual value of setrecs(𝐹) as a lower bound for setrecs(𝐹), as it implies that any set generated by successive applications of 𝐹 is a member of 𝐵. This theorem "gets off the ground" because we can start by letting 𝐴 = ∅, and the hypotheses of the theorem will hold trivially.

Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon).

Proof summary: Assume that 𝐴𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 45219, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 45219.) Therefore, by setrec1lem4 45220, (𝐹𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4825, it is a subset of the union of all sets recursively generated by 𝐹.

See df-setrecs 45214 for a detailed description of how the setrecs definition works.

(Contributed by Emmett Weisz, 9-Oct-2020.)

Hypotheses
Ref Expression
setrec1.b 𝐵 = setrecs(𝐹)
setrec1.v (𝜑𝐴 ∈ V)
setrec1.a (𝜑𝐴𝐵)
Assertion
Ref Expression
setrec1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem setrec1
Dummy variables 𝑎 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 setrec1.v . . . 4 (𝜑𝐴 ∈ V)
3 setrec1.a . . . . . . . . 9 (𝜑𝐴𝐵)
43sseld 3914 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎𝐵))
54imp 410 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐵)
6 setrec1.b . . . . . . . 8 𝐵 = setrecs(𝐹)
7 df-setrecs 45214 . . . . . . . 8 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
86, 7eqtri 2821 . . . . . . 7 𝐵 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
95, 8eleqtrdi 2900 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
10 eluni 4803 . . . . . 6 (𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ↔ ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
119, 10sylib 221 . . . . 5 ((𝜑𝑎𝐴) → ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
1211ralrimiva 3149 . . . 4 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
131, 2, 12setrec1lem3 45219 . . 3 (𝜑 → ∃𝑥(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
14 nfv 1915 . . . . . . 7 𝑧𝜑
15 nfv 1915 . . . . . . . 8 𝑧 𝐴𝑥
16 nfaba1 2963 . . . . . . . . 9 𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716nfel2 2973 . . . . . . . 8 𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1815, 17nfan 1900 . . . . . . 7 𝑧(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
1914, 18nfan 1900 . . . . . 6 𝑧(𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
202adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴 ∈ V)
21 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴𝑥)
22 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2319, 1, 20, 21, 22setrec1lem4 45220 . . . . 5 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
24 ssun2 4100 . . . . 5 (𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴))
2523, 24jctil 523 . . . 4 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → ((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
26 ssuni 4825 . . . 4 (((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2725, 26syl 17 . . 3 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2813, 27exlimddv 1936 . 2 (𝜑 → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2928, 8sseqtrrdi 3966 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  Vcvv 3441  cun 3879  wss 3881   cuni 4800  cfv 6324  setrecscsetrecs 45213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178  df-setrecs 45214
This theorem is referenced by:  elsetrecslem  45228  elsetrecs  45229  setrecsss  45230  setrecsres  45231  vsetrec  45232  onsetrec  45237
  Copyright terms: Public domain W3C validator