Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1 Structured version   Visualization version   GIF version

Theorem setrec1 47689
Description: This is the first of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is closed under 𝐹. This effectively sets the actual value of setrecs(𝐹) as a lower bound for setrecs(𝐹), as it implies that any set generated by successive applications of 𝐹 is a member of 𝐵. This theorem "gets off the ground" because we can start by letting 𝐴 = ∅, and the hypotheses of the theorem will hold trivially.

Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon).

Proof summary: Assume that 𝐴𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 47687, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 47687.) Therefore, by setrec1lem4 47688, (𝐹𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4935, it is a subset of the union of all sets recursively generated by 𝐹.

See df-setrecs 47682 for a detailed description of how the setrecs definition works.

(Contributed by Emmett Weisz, 9-Oct-2020.)

Hypotheses
Ref Expression
setrec1.b 𝐵 = setrecs(𝐹)
setrec1.v (𝜑𝐴 ∈ V)
setrec1.a (𝜑𝐴𝐵)
Assertion
Ref Expression
setrec1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem setrec1
Dummy variables 𝑎 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 setrec1.v . . . 4 (𝜑𝐴 ∈ V)
3 setrec1.a . . . . . . . . 9 (𝜑𝐴𝐵)
43sseld 3980 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎𝐵))
54imp 407 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐵)
6 setrec1.b . . . . . . . 8 𝐵 = setrecs(𝐹)
7 df-setrecs 47682 . . . . . . . 8 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
86, 7eqtri 2760 . . . . . . 7 𝐵 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
95, 8eleqtrdi 2843 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
10 eluni 4910 . . . . . 6 (𝑎 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ↔ ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
119, 10sylib 217 . . . . 5 ((𝜑𝑎𝐴) → ∃𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
1211ralrimiva 3146 . . . 4 (𝜑 → ∀𝑎𝐴𝑥(𝑎𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
131, 2, 12setrec1lem3 47687 . . 3 (𝜑 → ∃𝑥(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
14 nfv 1917 . . . . . . 7 𝑧𝜑
15 nfv 1917 . . . . . . . 8 𝑧 𝐴𝑥
16 nfaba1 2911 . . . . . . . . 9 𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716nfel2 2921 . . . . . . . 8 𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1815, 17nfan 1902 . . . . . . 7 𝑧(𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
1914, 18nfan 1902 . . . . . 6 𝑧(𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
202adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴 ∈ V)
21 simprl 769 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝐴𝑥)
22 simprr 771 . . . . . 6 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2319, 1, 20, 21, 22setrec1lem4 47688 . . . . 5 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
24 ssun2 4172 . . . . 5 (𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴))
2523, 24jctil 520 . . . 4 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → ((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}))
26 ssuni 4935 . . . 4 (((𝐹𝐴) ⊆ (𝑥 ∪ (𝐹𝐴)) ∧ (𝑥 ∪ (𝐹𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2725, 26syl 17 . . 3 ((𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2813, 27exlimddv 1938 . 2 (𝜑 → (𝐹𝐴) ⊆ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
2928, 8sseqtrrdi 4032 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2709  Vcvv 3474  cun 3945  wss 3947   cuni 4907  cfv 6540  setrecscsetrecs 47681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-reg 9583  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-r1 9755  df-rank 9756  df-setrecs 47682
This theorem is referenced by:  elsetrecslem  47697  elsetrecs  47698  setrecsss  47699  setrecsres  47700  vsetrec  47701  onsetrec  47706
  Copyright terms: Public domain W3C validator