|   | Mathbox for Emmett Weisz | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1 | Structured version Visualization version GIF version | ||
| Description: This is the first of two
fundamental theorems about set recursion from
       which all other facts will be derived.  It states that the class
       setrecs(𝐹) is closed under 𝐹.  This
effectively sets the
       actual value of setrecs(𝐹) as a lower bound for
       setrecs(𝐹), as it implies that any set
generated by successive
       applications of 𝐹 is a member of 𝐵.  This
theorem "gets off the
       ground" because we can start by letting 𝐴 = ∅, and the
hypotheses
       of the theorem will hold trivially. Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon). Proof summary: Assume that 𝐴 ⊆ 𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 49263, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 49263.) Therefore, by setrec1lem4 49264, (𝐹‘𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4931, it is a subset of the union of all sets recursively generated by 𝐹. See df-setrecs 49258 for a detailed description of how the setrecs definition works. (Contributed by Emmett Weisz, 9-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| setrec1.b | ⊢ 𝐵 = setrecs(𝐹) | 
| setrec1.v | ⊢ (𝜑 → 𝐴 ∈ V) | 
| setrec1.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| Ref | Expression | 
|---|---|
| setrec1 | ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 2 | setrec1.v | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 3 | setrec1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | 3 | sseld 3981 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝐵)) | 
| 5 | 4 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐵) | 
| 6 | setrec1.b | . . . . . . . 8 ⊢ 𝐵 = setrecs(𝐹) | |
| 7 | df-setrecs 49258 | . . . . . . . 8 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 8 | 6, 7 | eqtri 2764 | . . . . . . 7 ⊢ 𝐵 = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 9 | 5, 8 | eleqtrdi 2850 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | 
| 10 | eluni 4909 | . . . . . 6 ⊢ (𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | 
| 12 | 11 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | 
| 13 | 1, 2, 12 | setrec1lem3 49263 | . . 3 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | 
| 14 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
| 15 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝐴 ⊆ 𝑥 | |
| 16 | nfaba1 2912 | . . . . . . . . 9 ⊢ Ⅎ𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 17 | 16 | nfel2 2923 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 18 | 15, 17 | nfan 1898 | . . . . . . 7 ⊢ Ⅎ𝑧(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | 
| 19 | 14, 18 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑧(𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | 
| 20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ∈ V) | 
| 21 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ⊆ 𝑥) | |
| 22 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
| 23 | 19, 1, 20, 21, 22 | setrec1lem4 49264 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | 
| 24 | ssun2 4178 | . . . . 5 ⊢ (𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) | |
| 25 | 23, 24 | jctil 519 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → ((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | 
| 26 | ssuni 4931 | . . . 4 ⊢ (((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | 
| 28 | 13, 27 | exlimddv 1934 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | 
| 29 | 28, 8 | sseqtrrdi 4024 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 Vcvv 3479 ∪ cun 3948 ⊆ wss 3950 ∪ cuni 4906 ‘cfv 6560 setrecscsetrecs 49257 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-r1 9805 df-rank 9806 df-setrecs 49258 | 
| This theorem is referenced by: elsetrecslem 49273 elsetrecs 49274 setrecsss 49275 setrecsres 49276 vsetrec 49277 onsetrec 49282 | 
| Copyright terms: Public domain | W3C validator |