![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1 | Structured version Visualization version GIF version |
Description: This is the first of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is closed under 𝐹. This
effectively sets the
actual value of setrecs(𝐹) as a lower bound for
setrecs(𝐹), as it implies that any set
generated by successive
applications of 𝐹 is a member of 𝐵. This
theorem "gets off the
ground" because we can start by letting 𝐴 = ∅, and the
hypotheses
of the theorem will hold trivially.
Variable 𝐵 represents an abbreviation of setrecs(𝐹) or another name of setrecs(𝐹) (for an example of the latter, see theorem setrecon). Proof summary: Assume that 𝐴 ⊆ 𝐵, meaning that all elements of 𝐴 are in some set recursively generated by 𝐹. Then by setrec1lem3 47220, 𝐴 is a subset of some set recursively generated by 𝐹. (It turns out that 𝐴 itself is recursively generated by 𝐹, but we don't need this fact. See the comment to setrec1lem3 47220.) Therefore, by setrec1lem4 47221, (𝐹‘𝐴) is a subset of some set recursively generated by 𝐹. Thus, by ssuni 4894, it is a subset of the union of all sets recursively generated by 𝐹. See df-setrecs 47215 for a detailed description of how the setrecs definition works. (Contributed by Emmett Weisz, 9-Oct-2020.) |
Ref | Expression |
---|---|
setrec1.b | ⊢ 𝐵 = setrecs(𝐹) |
setrec1.v | ⊢ (𝜑 → 𝐴 ∈ V) |
setrec1.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
setrec1 | ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
2 | setrec1.v | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
3 | setrec1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | 3 | sseld 3944 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ 𝐵)) |
5 | 4 | imp 408 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐵) |
6 | setrec1.b | . . . . . . . 8 ⊢ 𝐵 = setrecs(𝐹) | |
7 | df-setrecs 47215 | . . . . . . . 8 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
8 | 6, 7 | eqtri 2761 | . . . . . . 7 ⊢ 𝐵 = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
9 | 5, 8 | eleqtrdi 2844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
10 | eluni 4869 | . . . . . 6 ⊢ (𝑎 ∈ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) | |
11 | 9, 10 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
12 | 11 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑥(𝑎 ∈ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
13 | 1, 2, 12 | setrec1lem3 47220 | . . 3 ⊢ (𝜑 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
14 | nfv 1918 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
15 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝐴 ⊆ 𝑥 | |
16 | nfaba1 2912 | . . . . . . . . 9 ⊢ Ⅎ𝑧{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
17 | 16 | nfel2 2922 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
18 | 15, 17 | nfan 1903 | . . . . . . 7 ⊢ Ⅎ𝑧(𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
19 | 14, 18 | nfan 1903 | . . . . . 6 ⊢ Ⅎ𝑧(𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
20 | 2 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ∈ V) |
21 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝐴 ⊆ 𝑥) | |
22 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
23 | 19, 1, 20, 21, 22 | setrec1lem4 47221 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
24 | ssun2 4134 | . . . . 5 ⊢ (𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) | |
25 | 23, 24 | jctil 521 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → ((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) |
26 | ssuni 4894 | . . . 4 ⊢ (((𝐹‘𝐴) ⊆ (𝑥 ∪ (𝐹‘𝐴)) ∧ (𝑥 ∪ (𝐹‘𝐴)) ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)})) → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
28 | 13, 27 | exlimddv 1939 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
29 | 28, 8 | sseqtrrdi 3996 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 ∪ cuni 4866 ‘cfv 6497 setrecscsetrecs 47214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9533 ax-inf2 9582 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-r1 9705 df-rank 9706 df-setrecs 47215 |
This theorem is referenced by: elsetrecslem 47230 elsetrecs 47231 setrecsss 47232 setrecsres 47233 vsetrec 47234 onsetrec 47239 |
Copyright terms: Public domain | W3C validator |