Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28a Structured version   Visualization version   GIF version

Theorem cdlemg28a 37310
Description: Part of proof of Lemma G of [Crawley] p. 116. First equality of the equation of line 14 on p. 117. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg28a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))

Proof of Theorem cdlemg28a
StepHypRef Expression
1 simp11 1194 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1195 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp21 1197 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
4 simp22 1198 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝐹𝑇)
5 simp23 1199 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝐺𝑇)
6 simp1 1127 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)))
7 simp21l 1281 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝑧𝐴)
8 simp31l 1287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝑣 ≠ (𝑅𝐹))
9 simp32 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝑧 (𝑃 𝑣))
10 simp33l 1291 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝐹𝑃) ≠ 𝑃)
11 cdlemg12.l . . . 4 = (le‘𝐾)
12 cdlemg12.j . . . 4 = (join‘𝐾)
13 cdlemg12.m . . . 4 = (meet‘𝐾)
14 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
15 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
16 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
1811, 12, 13, 14, 15, 16, 17cdlemg27a 37309 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))
196, 7, 4, 8, 9, 10, 18syl123anc 1378 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ¬ (𝑅𝐹) (𝑃 𝑧))
20 simp31r 1288 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → 𝑣 ≠ (𝑅𝐺))
21 simp33r 1292 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → (𝐺𝑃) ≠ 𝑃)
2211, 12, 13, 14, 15, 16, 17cdlemg27a 37309 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐺𝑇) ∧ (𝑣 ≠ (𝑅𝐺) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐺𝑃) ≠ 𝑃)) → ¬ (𝑅𝐺) (𝑃 𝑧))
236, 7, 5, 20, 9, 21, 22syl123anc 1378 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ¬ (𝑅𝐺) (𝑃 𝑧))
2411, 12, 13, 14, 15, 16, 17cdlemg25zz 37307 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ (𝑅𝐹) (𝑃 𝑧) ∧ ¬ (𝑅𝐺) (𝑃 𝑧))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))
251, 2, 3, 4, 5, 19, 23, 24syl133anc 1384 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑣 ≠ (𝑅𝐹) ∧ 𝑣 ≠ (𝑅𝐺)) ∧ 𝑧 (𝑃 𝑣) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑧 (𝐹‘(𝐺𝑧))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  lecple 16389  joincjn 17371  meetcmee 17372  Atomscatm 35880  HLchlt 35967  LHypclh 36601  LTrncltrn 36718  trLctrl 36775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-riotaBAD 35570
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-1st 7536  df-2nd 7537  df-undef 7781  df-map 8249  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-p1 17467  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968  df-llines 36115  df-lplanes 36116  df-lvols 36117  df-lines 36118  df-psubsp 36120  df-pmap 36121  df-padd 36413  df-lhyp 36605  df-laut 36606  df-ldil 36721  df-ltrn 36722  df-trl 36776
This theorem is referenced by:  cdlemg28  37321
  Copyright terms: Public domain W3C validator