Step | Hyp | Ref
| Expression |
1 | | simp11l 1285 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β πΎ β HL) |
2 | | simp23 1209 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π
β π΄) |
3 | | simp21l 1291 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β π΄) |
4 | | simp22l 1293 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β π΄) |
5 | | simp33l 1301 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π
β€ (π β¨ π)) |
6 | | simp32l 1299 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
7 | | simp33r 1302 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π
β€ (π β¨ π)) |
8 | | cdleme19.l |
. . . . 5
β’ β€ =
(leβπΎ) |
9 | | cdleme19.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
10 | | cdleme19.m |
. . . . 5
β’ β§ =
(meetβπΎ) |
11 | | cdleme19.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
12 | | cdleme19.h |
. . . . 5
β’ π» = (LHypβπΎ) |
13 | | cdleme19.u |
. . . . 5
β’ π = ((π β¨ π) β§ π) |
14 | | cdleme19.f |
. . . . 5
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
15 | | cdleme19.g |
. . . . 5
β’ πΊ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
16 | | cdleme19.d |
. . . . 5
β’ π· = ((π
β¨ π) β§ π) |
17 | | cdleme19.y |
. . . . 5
β’ π = ((π
β¨ π) β§ π) |
18 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdleme19a 38812 |
. . . 4
β’ ((πΎ β HL β§ (π
β π΄ β§ π β π΄ β§ π β π΄) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ π
β€ (π β¨ π))) β π· = ((π β¨ π) β§ π)) |
19 | 1, 2, 3, 4, 5, 6, 7, 18 | syl133anc 1394 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π· = ((π β¨ π) β§ π)) |
20 | | simp11 1204 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (πΎ β HL β§ π β π»)) |
21 | | simp12 1205 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
22 | | simp13 1206 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
23 | | simp21 1207 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
24 | | simp22 1208 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
25 | | simp31 1210 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (π β π β§ π β π)) |
26 | | simp32r 1300 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β Β¬ π β€ (π β¨ π)) |
27 | 8, 9, 10, 11, 12, 13, 14, 15 | cdleme16 38794 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ π) β§ π) = ((πΉ β¨ πΊ) β§ π)) |
28 | 20, 21, 22, 23, 24, 25, 6, 26, 27 | syl332anc 1402 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β ((π β¨ π) β§ π) = ((πΉ β¨ πΊ) β§ π)) |
29 | 19, 28 | eqtrd 2773 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π· = ((πΉ β¨ πΊ) β§ π)) |
30 | 1 | hllatd 37872 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β πΎ β Lat) |
31 | | simp11r 1286 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β π») |
32 | | simp12l 1287 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β π΄) |
33 | | simp13l 1289 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β π΄) |
34 | | eqid 2733 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
35 | 8, 9, 10, 11, 12, 13, 14, 34 | cdleme1b 38735 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΉ β (BaseβπΎ)) |
36 | 1, 31, 32, 33, 3, 35 | syl23anc 1378 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β πΉ β (BaseβπΎ)) |
37 | 8, 9, 10, 11, 12, 13, 15, 34 | cdleme1b 38735 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΊ β (BaseβπΎ)) |
38 | 1, 31, 32, 33, 4, 37 | syl23anc 1378 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β πΊ β (BaseβπΎ)) |
39 | 34, 9 | latjcl 18333 |
. . . 4
β’ ((πΎ β Lat β§ πΉ β (BaseβπΎ) β§ πΊ β (BaseβπΎ)) β (πΉ β¨ πΊ) β (BaseβπΎ)) |
40 | 30, 36, 38, 39 | syl3anc 1372 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β (πΉ β¨ πΊ) β (BaseβπΎ)) |
41 | 34, 12 | lhpbase 38507 |
. . . 4
β’ (π β π» β π β (BaseβπΎ)) |
42 | 31, 41 | syl 17 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π β (BaseβπΎ)) |
43 | 34, 8, 10 | latmle1 18358 |
. . 3
β’ ((πΎ β Lat β§ (πΉ β¨ πΊ) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((πΉ β¨ πΊ) β§ π) β€ (πΉ β¨ πΊ)) |
44 | 30, 40, 42, 43 | syl3anc 1372 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β ((πΉ β¨ πΊ) β§ π) β€ (πΉ β¨ πΊ)) |
45 | 29, 44 | eqbrtrd 5128 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π
β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π
β€ (π β¨ π) β§ π
β€ (π β¨ π)))) β π· β€ (πΉ β¨ πΊ)) |